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Abstract

A Euclidean interpretation of special relativity is given wherein proper time τ acts as the fourth
Euclidean coordinate, and time t becomes a fifth Euclidean dimension. Velocity components in both
space and time are formalized while their vector sum in four dimensions has invariant magnitude c.
Classical equations are derived from this Euclidean concept. The velocity addition formula shows a
deviation from the standard one; an analysis and justification is given for that.
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1 Introduction

Euclidean relativity, both special and general, is
steadily gaining attention as a viable alternative
to the Minkowski framework, after the works of
a number of authors. Amongst others Montanus
[1,2], Gersten [3] and Almeida [4], have paved the
way. Its history goes further back, as early as 1963
when Robert d’E Atkinson [5] first proposed Eu-
clidean general relativity.

The version in the present paper emphasizes ex-
tending the notion of velocity to the time dimen-
sion. Next, the consistency of this concept in 4D
Euclidean space is shown with the classical Lorentz
transformations, after which the major inconsis-
tency with classical special relativity, the velocity
addition formula, is addressed. Following para-
graphs treat energy and momentum in 4D Eu-
clidean space, partly using methods of relativistic
Lagrangian formalism already explored by others
after which some Euclidean 4-vectors are estab-
lished.

A simplified and popularized version is
available that will get you in the ’right
mood’. It can be found on the web at
http://www.euclideanrelativity.com.

2 The Time Dimension

Minkowski interpretations of special relativity treat
time differently from spatial dimensions, showing
from the Minkowski metric where the time compo-
nent is given the opposite sign. Some alternative
interpretations (e.g. [1-4]) seek positive definite
Euclidean metrics for space-time. Also in this arti-
cle, the time dimension will be treated as a regular
fourth dimension in Euclidean space-time.

If time is considered a fourth spatial dimension,
then it must show properties similar to those found
in the other three. In there we encounter properties
like length, speed, acceleration, curvature etc., ex-
pressed respectively as s, ds/dt, d2s/dt2, Ra

bcd etc.
Of those properties, a single one can be measured
relatively easily in the time dimension: the ’length’
or timeduration ∆t. That raises the question of
how a hypothetical speed in time, let us call it χ,
should be expressed mathematically. In [6], Greene
has given a derivation of an expression that can be
used as the velocity component in the Euclidean

time dimension. Rewriting the usual Minkowski
invariant

c2 = (dct/dτ)2 − (dx/dτ)2 − (dy/dτ)2 − (dz/dτ)2

(1)
into Euclidean form:

c2 = (cdτ/dt)2+(dx/dt)2+(dy/dt)2+(dz/dt)2 (2)

one arrives at the temporal velocity component

χ = cdτ/dt (3)

This clearly defines τ as the coordinate for the
fourth Euclidean dimension, and it says that the
velocity components in all four dimensions involve
derivatives with respect to t, which then can no
longer represent the fourth dimension. It can only
be an extra, fifth dimension, x5 (provided we index
the other four x1, x2, x3, and x4 respectively, with
τ = x4). This fifth dimension is sometimes treated
as a parameter in Euclidean approaches similar to
special relativity, e.g. in [1,2], but here it will be
treated as a genuine extra Euclidean dimension. A
general expression for speed in the time dimension
(henceforth refereed to as time-speed) is now:

χ = cdx4/dx5 (4)

while the scalar value of time-speed χ is

χ =
√

c2 − v2 (5)

The general expression for spatial velocity compo-
nents in 4D Euclidean space-time is

vi = dxi/dx5 (6)

3 Using Time-Speed in Special
Relativity

It will be shown that the Lorentz transformation
equations for length and time can be reproduced
from the Euclidean context.

Maintaining orthogonality for all Euclidean di-
mensions, Eqs. (2) and (5) imply that the axes
for the proper time dimension and the spatial di-
mension in the direction of the initial motion must
have rotated for the moving object, as seen from the
rest frame of the observer, in fact defining Lorentz
transformations as rotations in SO(4). See also [1],
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where this is referred to as a Relative Euclidean
Space-Time. In the approach that follows now,
these axes will therefor (unlike in the Minkowski di-
agram) both rotate in the same direction, clockwise
or counter clockwise, depending on the direction of
the motion. The diagrams in Fig. 1 and Fig. 2
should illustrate this.
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Figure 1: 4D representation of an observer at O
and an object A, both at rest.

Figure 1 depicts an object A at rest together with
an observer at O, also at rest. The horizontal axis
shows both the spatial dimensions x′i, i = 1, 2, 3,
for the object A as well as the spatial dimensions xi

for the observer. The vertical axis shows both time
dimensions with notation conform Eq. (2), so x4 =
cτ . Due to object A being at rest, relative to the
observer, the axes overlap. The circle is just a tool
to better show the rotation that will be depicted in
Fig. 2.

Definitions are as follows:

• Vector C indicates the 4D velocity, having
magnitude c, of object A.

• Vector V, of magnitude v, and X, of magni-
tude χ, are the projections of this velocity C
on, respectively, the spatial dimensions and the
proper time dimension of the observer.

• l′ indicates the proper length of object A in the
spatial direction x′i in the rest frame of object
A (in this example l′ is also set to c).
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Figure 2: Object A in motion relative to observer.
The dimensional axes of object A have rotated rel-
ative to the observer.

• l and l4 are, respectively, the projections of this
proper length on the spatial dimensions and
the proper time dimension of the observer.

In Fig. 2, object A moves with speed v relative
to the observer. This leads to a relative rotation of
dimensions x′4 and x′i such that V is the projection
of the original 4D velocity C of object A on the
xi axis of the observer at rest. The situation is
examined at the instant where xi = x′i = x4 =
x′4 = 0.

The Lorentz transformation equation for x is

x′ = γ(x− vt) (7)

where
γ = 1/

√
1− v2/c2 (8)

but this factor can also be written as

γ = c/
√

c2 − v2 = c/χ (9)

leading to
x′ = c(x− vt)/χ (10)

At t = 0, the length of object A will be contracted,
as measured by the observer, according to

x = x′χ/c (11)

so the contraction of length l can be written as

l = l′χ/c (12)
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which shows that l, as measured by the observer
at rest, is indeed the goniometric projection of the
proper length l′ on the xi axis.

Arrow l4 is the projected ’length’ component of
the moving object A on the proper time axis x4

of the observer as a result of the rotation of the
dimension x′i. This length is the manifestation of
the difference in proper time (the non-simultaneity)
between the endpoints of object A in motion ac-
cording to the Lorentz transformation equation for
time:

t′ = γ(t− vx/c2) (13)

and can be interpreted as a rotation ’out of space’
of the proper length l′ towards the negative axis of
x4. At t = 0 the proper-time difference between
tail and head of arrow l will be

t′ = −γvl/c2 = −lv/cχ (14)

From l = l′χ/c and l4 = l′v/c it follows that

l4 = −ct′ (15)

which confirms that l4 represents the proper-time
difference in object A. The factor c results from the
choice of units for space and time.

Summarizing, from the perspective of the ob-
server, the proper length l′ of object A is decom-
posed in the components l and l4 according to:

l′2 = l2 + l24 (16)

and so is also the 4D speed c of the object decom-
posed in the components χ and v:

c2 = χ2 + v2. (17)

Equation (16) thus combines Eqs. (7) and (13) into
a single Pythagorean equation in four dimensions.

4 Relativistic Addition of Ve-
locities

It appears that the Euclidean approach as used in
the previous Section does not yield the same equa-
tion for relativistic addition of velocities as used in
special relativity. Although this particular point
may be a serious obstacle to the acceptation of this
proposal, it obviously is necessary to point it out.

Figure 3 depicts a situation with three reference
frames: a stationary unprimed frame x, a moving
primed frame x′ and a third, double primed frame
x′′ of an object that moves relative to both other
frames, x and x′. Each frame has dimensional axes
rotated relative to the other frames as a result of
the relative motion.
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Figure 3: Relativistic addition of velocities in three
reference frames, each with rotated dimensional
axes relative to each other.

• Vector V of magnitude v is the spatial velocity
of an observer with rest frame x′ as measured
by an observer with rest frame x.

• Vector W of magnitude w is the spatial veloc-
ity of a third object as measured by the ob-
server with rest frame x.

• Vector U of magnitude u is the spatial velocity
of that same object but now as measured by
the observer with rest frame x′.

Classically U, V, and W are considered parallel, 
yielding the relation:

w =
u + v

1 + uv/c2
(18)

In the current approach U, V and W are not  
parallel, therefor yielding a different relation:

w = c cos(−α) = c sin(
1
2
π + α)

= c sin(β + ϕ) = c(cosϕ sin β + cos β sin ϕ)

= u
√

1− v2/c2 + v
√

1− u2/c2 (19)
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This expression is not nearly similar to the classical
expression in Eq. (18).

Like Eq. (18), Eq. (19) still limits the speeds
as measured by both observers to the maximum of
c, which is also clear by inspection of the Figure.
Some remarks will be made now on the probability
of either of the equations to be the right one:

1. Equation (18) is in fact based on the univer-
sality of light speed and the basis for reason-
ing is that an object, e.g. a photon, having
speed c for an observer in frame x will still have
that same speed c for an observer in frame x′.
This is one of Einstein’s original postulates and
also in this Euclidean approach it will still be
maintained as a valid postulate, which essen-
tially means that the photons velocity vector,
as measured from the moving frame, must have
rotated along with that frame. The third ob-
ject, having speed w, as measured from frame
x, is not a photon but a mass-carrying parti-
cle for which such a rotation apparently does
not apply. It must therefor be emphasized that
Eq. (19) for now may only be applied to mass-
carrying particles.

2. Equation (18) shows a discontinuity that is un-
usual in physics. In Fig. 4, Eq. (18) is plotted
for the situation where u always equals v.
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u = v
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Figure 4: Graph of classical equation for relativistic
addition of velocities.

With u and v nearing c, the resulting w will
also near c, which is in accordance with the

classical view. But if (as a matter of math-
ematical experiment) the range of u and v is
extended beyond the maximum value of c then
the plot looks like depicted in Fig. 5.

u = v

w

c

c

-c

-c

0

Figure 5: Classical graph for relativistic addition of
velocities with hypothetical (superluminal) exten-
sions.

The part from Fig. 4 can still be recognized
but it is clear now that this actually forms part
of a continuous function that extends beyond
c. The part beyond u = v = c may not be used,
solely because the classical function is not de-
fined, nor ever shown to be valid, for such su-
perluminal extensions (actually the space-like
quadrants in the classical light cone). This fact
strongly suggests that the graph from Fig. 4
is an approximation of the real function.

Finally, both Eqs. (18) and (19) are plotted
together in Fig. 6.

Equation (19) is almost identical for speeds be-
low about c/2 but begins to deviate at higher
speeds. The top of Eq. (19) corresponds to
u = v = c/

√
2. From the circle diagram in

Fig. 3 it shows that the time-speed of the ob-
ject, as measured from frame x, then becomes
zero. Equation (19) further shows decreasing
values for w in situations where the values of u
and v go beyond c/

√
2 (the frame of the mov-

ing object then rotates beyond π/2 relative to
frame x). It turns out that in that case the cor-
responding time-speed for the object becomes
negative. (This situation might be related to
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Figure 6: Classical [Eq. (18)] and newly derived
graph [Eq. (19)] for relativistic addition of veloci-
ties plotted together for u = v.

anti-particles, running ’backwards in time’.).

The situation where u equals v gives the max-
imum possible deviation relative to the clas-
sical graph. Other ratios between u and v
give (much) smaller deviations and the tops
of Eq. (19) will shift outwards towards c as
can be seen in Fig. 7 where the ratio between
u and v equals 3:1. At a ratio 10:1 both plots
are practically identical. Virtually all practi-
cal situations that require the velocity addition
formula to be used exist under such circum-
stances, which indicates that a deviation from
the classical graph is likely to remain unno-
ticed.

3. Some interpretations of Fizeau’s experiment
give rise to doubt concerning the correctness
of Eq. (18). If Eq. (19) is used in the anal-
ysis of Fizeau’s experiment done by Renshaw
[7], it yields better results than Eq. (18), al-
though still not within the margins as claimed
by Michelson.

The vast majority of experimental set-ups that
are aimed at verification of relativity theory
are using two reference frames. These exper-
iments are not suitable for the verification of
the velocity addition formula. One would have
to use a set-up with three reference frames. At
speeds on the order of 104 m/s the difference in
resulting values between Eqs. (18) and (19) is

w-c

-c

c

c

u = v/30

New

Classic

-0.949c

Figure 7: Classical [Eq. (18)] and newly derived
graph [Eq. (19)] for relativistic addition of veloci-
ties plotted together for u = v/3.

on the order of 10−5 m/s, which might be no-
ticeable using adequately accurate measuring
devices.

A hypothetical case will now be used to show
that Eq. (19) does not necessarily lead to causality
conflicts as a result of the negative time-speeds that
can occur.

A spaceship travels relative to Earth at speed
vs = 0.9c and heads toward an asteroid that is at
rest relative to Earth. The ship launches a missile
at the asteroid at vm = 0.9c relative to the ship.
An observer on the ship watches the missile destroy
the asteroid. According to Eq. (19), an observer
on Earth would see the missile traveling at only
0.7846c so the missile’s spatial speed is lower than
that of the spaceship. It seems therefor that this
observer would see the ship hit the asteroid before
the missile.

The explanation of this paradox can be found in
the comparison of the proper times of all objects
involved. We call the proper time for the spaceship
τs and for the missile τm. For simplicity we set
the space-time event of the launch at t = τm =
τs = 0 and the distance between the spaceship and
the asteroid at that moment at 0.9 light second (as
measured by the observer on Earth).

The observer on Earth calculates time-
coordinates of the impact (against the asteroid)
using his own time t for the spaceship: ts = 1s;
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and for the missile: tm = 0.9/0.7846 = 1.147s, so it
seems as if the spaceship reaches the asteroid first.
In 4D Euclidean space-time however the observer
measures the time-speed χs of the spaceship as:
χs =

√
c2 − v2

s =
√

c2 − (0.9c)2 = 0.4359c.
According to this observer the absolute value

of the timespeed χm of the missile is χm =√
c2 − (0.7846c)2 = 0.62c, but from the circle di-

agram (Fig. 3) it shows that we must now take
the negative root so its value is χm = −0.62c.
Note that the cyclic nature of γ now also implies
that in this situation γ has a negative value in
τm = tm/γ = tmχm/c for the missile.

We calculate the proper times at the moment
of impact according to the observer on Earth for
the spaceship: τs = tsχs/c = 0.4359s; and for the
missile: τm = 1.147(−0.62) = −0.7111s.

In proper time the missile hits the asteroid before
the spaceship does despite its lower spatial speed.
Causality is therefor not violated. The missile runs
backwards in proper time.

5 Relativistic Doppler Effect
Using the identity χ =

√
c2 − v2 for the time-speed

variable in the wavelength equation for the rela-
tivistic Doppler effect

λ′ = λ0

√
1 + v/c

1− v/c
(20)

simplifies this expression to

λ′ = λ0(c + v)/χ (21)

It is possible to identify the individual contribu-
tions of the factors v and χ to the total Doppler
effect by considering χ = c (which isolates the ef-
fect of the spatial speed) and v = 0 (which isolates
the effect of the time-speed).

Setting χ = c results in:

λ′v = λ0(1 + v/c) (22)

which is the regular equation for the acoustic
Doppler effect with moving source and stationary
receiver. Setting v = 0 results in:

λ′χ = λ0c/χ (23)

which simply makes the photon’s frequency propor-
tional to the time-speed of the emitting particle.

The relativistic Doppler effect can thus be inter-
preted as a combination of the normal ’acoustic’
Doppler effect in space and a frequency shift that
results from the lower time-speed.

6 Mass, Energy and Momen-
tum

Figure 8 depicts a moving object with spatial veloc-
ity V of magnitude v, as measured by an observer
at point L, at rest.
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0

X

V
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Figure 8: 4D velocity of magnitude c in x′4 of an
object at L. An observer at rest at L has velocity
of magnitude c in x4.

The vector sum of spatial and time-velocities re-
flects the four-velocities of the observer (along x4)
and the moving object (along x′4). It follows natu-
rally that the Lorentz invariant m0c (m0 is the rest
mass) in the moving object A can be decomposed
in

m2
0c

2 = m2
0χ

2 + m2
0v

2 (24)

which, using the identities E = γm0c
2 and p =

γm0v, is equivalent to the classical equation

E2/c2 = m2
0c

2 + p2 (25)

E being the total energy and p being the spatial
momentum.

The components in the right part of Eq. (24)
cannot simply be interpreted as, respectively, the
object’s momenta in the time dimension and the
spatial dimension of the rest frame of the observer.
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There is an obvious problem in the fact that the
factor γ is involved in the expressions for E and p.
If we multiply the factor γ2 into all three elements
of Eq. (24) we get:

γ2m2
0c

2 = γ2m2
0χ

2 + γ2m2
0v

2 (26)

which describes triangle LK’M (if m0 is set to 1).
This alternative form for Eq. (24) immediately
shows the meaning of its components. They now
correspond one to one with the components in Eq.
(25): γm0c = E/c, γm0χ = m0c, γm0v = p. The
factor γm0c is however not invariant under rota-
tions in SO(4), while m0c is. [Note that although
m0c is indeed Lorentz invariant from the perspec-
tive of the observer, its physical meaning in its own
rest frame is the moving object’s time-momentum.
The same invariant value can be found in the rest
frame of the observer (see also Fig. 9) but should
then be read as γm0χ.] The Lagrangian formal-
ism for this situation has been worked out by Mon-
tanus in [2]. The reader is therefore referred to
this source for the detailed derivation. The generic
principles used for such 5D situations (or more gen-
erally 4D with the addition of an extra parameter
to keep track of the progress of the object along its
world-line) appear in Goldstein [8]. The latter how-
ever uses the classical indefinite Minkowski metric
as a basis for the development of the relativistic La-
grangian Λ where Montanus uses a positive definite
metric like in this article. A short overview of the
main equations is given here.

In agreement with classical mechanics it is as-
sumed that the variation according to Hamilton’s
principle:

δI =
∫ x5(2)

x5(1)

Λ(xµ, uµ)dx5 (27)

is an extremum, where uµ = dxµ/dx5. The corre-
sponding Euler-Lagrange equations of motion are:

∂Λ
∂xµ

− d

dx5
(∂Λ/∂uµ) = 0 (28)

leading to a possible relativistic Lagrangian for a
free object in the absence of a forcefield (so the
potential energy equals zero):

Λ = m0uµuµ (29)

which equals, as a result of the universal velocity
magnitude c for the free particle in 4D space-time:

Λ = m0c
2 (30)

The latter is to be interpreted as the ’kinetic en-
ergy’ of the particle in four dimensions, which is
a fundamentally different concept than kinetic en-
ergy in three dimensions. It corresponds to the
total energy of a particle at rest. Other solutions
for Λ are possible but the essential element is that
any solution is a constant in 4D space-time.

The relativistic Lagrangian Λ shows that the fac-
tor γ in Eq. (26) must be a result of our confine-
ment to a 3D subspace of 4D space-time. In order
to maintain conservation laws for energy and mo-
mentum, while only being able to measure their
’projections’ to our 3D space, the factor γ is an
artificial necessity. It vanishes for a hypothetical
observer with full 4D observational skills, who mea-
sures the object’s speed and energy as constants.

7 Transformation of Energy
and Momentum

The generic transformation equations for energy
and momentum depend indirectly on the equation
for relativistic addition of velocities. Because a new
one replaces this equation, it is necessary to rework
the transformation equations for energy and mo-
mentum as well.

Figure 9 depicts an object moving with velocity
W of magnitude w relative to frame x and velocity
U of magnitude u relative to frame x′.

(please refer also to Fig. 3 and the definitions
given there)

• E = γ(w)m0c
2 is the energy of an object that

moves with velocity W of magnitude w relative
to frame x and measured in frame x.

• E′ = γ(u)m0c
2 is the energy of that same ob-

ject moving with velocity U of magnitude u
relative to frame x′ and measured from frame
x′.

• Frame x′ moves with velocity V of magnitude
v relative to frame x.

• γ(u) = 1
/√

1− u2/c2
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Figure 9: Generic transformation of energy and mo-
mentum in three reference frames with rotated di-
mensional axes.

• γ(v) = 1
/√

1− v2/c2

• γ(w) = 1
/√

1− w2/c2

For energy this leads to a generic transformation
equation

E/E′ = γ(w)/γ(u) (31)

which can be written in different forms using Eq.
(19). With u = 0 this reduces to the classical form:

E/E′ = γ(v) (32)

For momentum a generic transformation equation
is

p/p′ = wE/uE′ (33)

where:

• p′ = γ(u)m0u is the momentum of the object
as measured from frame x′.

• p = γ(w)m0w is the momentum of the object
as measured from frame x.

8 Euclidean Four-Vectors

The traditional Minkowski line element with metric
(+1,−1,−1,−1) is:

ds2 = c2dt2 − dx2 − dy2 − dz2 (34)

where ds = cdτ . Four-vectors with the Euclidean
metric (+1, +1, +1,+1) as used in the previous Sec-
tions use the 4D velocity of the moving object and
4D Euclidean distances as invariants, which is in
fact the essence of Eq. (2):

c2 = v2
1 + v2

2 + v2
3 + χ2 (35)

Multiplication with dt2 = dx2
5 yields (recall that

χ = cdτ/dt):

c2dt2 = dx2
1 + dx2

2 + dx2
3 + c2dτ2 (36)

where the factors c2dτ2 and c2dt2 from Eq. (34)
have switched roles.

The Euclidean metric thus gives rise to
four-vectors for position, velocity and en-
ergy/momentum:

Euclidean Minkowskian
(x1, x2, x3, cτ) (x1, x2, x3, ct)
(v1, v2, v3, χ) γ(v1, v2, v3, c)
(m0v1,m0v2,m0v3,m0χ) (p1, p2, p3, E/c)

Equation (36) is not really new. It is merely Eq.
(34) written in a different form, with as a main
input the definition of χ, being the time-speed of
an object as measured by an observer at rest, which
has three effects:

• It creates a new invariant c, being the universal
magnitude of the 4D velocity of an object.

• It provides a Euclidean basis for the definition
of vectors in the direction of the time dimen-
sion.

• It enables these new vectors to be summed
with existing vectors in the spatial dimensions.

In general, the new Euclidean four-vectors can be
derived from the Minkowski four-vectors by using
the time component in the Minkowski four-vector
as the invariant (the vector sum) for the new four-
vector. It is essentially doing Pythagoras “the other
way around”, i.e., calculating the hypotenuse from
the rectangular sides, instead of calculating a rect-
angular side from the hypotenuse and the other
rectangular side (refer to [9] for a detailed treat-
ment of Minkowski and Euclidean four-vectors).
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