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Abstract

In Euclidean Special Relativity (ESR), spacetime is represented as a four-dimensional Euclidean space
in which proper time acts as a spatial coordinate and coordinate time serves as an invariant evolution
parameter. Within this framework, the four-momentum of a massive particle is a constant-magnitude
Euclidean vector whose spatial acceleration corresponds to a rotation in four-space.

This paper analyzes momentum exchange between massive particles and electromagnetic radiation
using this geometrical interpretation. It is shown that the efficiency of momentum transfer depends on
the relative orientation of photon four-momentum and particle four-momentum in four-space. Photons
emitted by relativistically moving sources possess a rotated four-momentum vector and can therefore
couple more efficiently to the spatial momentum of massive particles than photons emitted from
sources at rest in the laboratory frame.

The analysis does not introduce new physical interactions or violate conservation laws. All effects
follow from the kinematics of Euclidean four-vectors and standard electromagnetic momentum
exchange. Possible implications for radiation-based propulsion are discussed as a consequence of this
interpretation.

1. Introduction space. Acceleration corresponds to a rotation of
this vector rather than a change in its magnitude.
This paper applies this interpretation to momentum
exchange between massive particles and
electromagnetic radiation, with particular attention

to the role of photon momentum orientation.

In conventional special relativity, the four-
momentum of a particle is represented as a
Lorentz-covariant vector in Minkowski spacetime,
whose invariant norm corresponds to the rest mass.
While this formulation is mathematically
consistent and experimentally validated, its four-
vector components are generally regarded as
abstract quantities whose physical interpretation is
limited to measurable projections such as energy
and three-momentum.

2. Four-momentum in Euclidean Special
Relativity

2.1 Definition for massive particles

Euclidean Special Relativity (ESR) offers an
alternative geometric interpretation in which
spacetime is treated as a four-dimensional
Euclidean space with a positive-definite metric.
Proper time 7 functions as the fourth spatial
coordinate, while coordinate time t acts as an
invariant parameter ordering physical processes.
This approach has been developed in detail in
earlier work [1,2] and [3,4].

Within ESR, four-momentum is interpreted as a
physically real constant-magnitude vector in four-

In ESR, the four-momentum of a massive particle
is defined as

P = (mox, myv),

where:
e myis the invariant rest mass,
e v is the three-velocity in space,

° X = dT/dt.



The Euclidean magnitude of this vector is
invariant:

| P 1= /(mex)? + (mpv)? = myc.

A particle at rest in space therefore possesses a real
four-momentum mc entirely oriented along the
proper-time axis. Spatial acceleration corresponds
to a rotation of P toward the spatial subspace,
increasing the spatial momentum component while
decreasing the proper-time component.

2.2 Relation to the Minkowski formulation

In the Minkowski formulation, the four-
momentum components form a pseudo-Euclidean
vector whose invariant norm remains constant
while individual components can grow without
bound. In ESR, the same physical behavior is
interpreted geometrically as a projection effect: the
Minkowski spatial momentum corresponds to a
projection of a constant Euclidean vector onto
three-dimensional space, analogous to a shadow
projection (Fig.1 and 2).
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Figure 1: Four-momentum components in 4D
Euclidean space-time.
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Figure 2: Minkowski versus ESR momentum
components.

This reinterpretation does not alter experimental
predictions but provides an alternative geometric
picture of relativistic dynamics.

3. Photon momentum in ESR

Photons have zero rest mass and therefore do not
admit a four-momentum of the form m,P.
Nevertheless, electromagnetic radiation carries
energy and momentum and must be represented
consistently within ESR.

In this framework, a photon is associated with a
four-momentum vector K of Euclidean magnitude

| KI|= ﬂ
c
where E, is the photon energy. Unlike the null four-
vectors of Minkowski spacetime, photon four-
momentum in ESR is not constrained to zero
Euclidean length. Instead, its orientation in four-

space depends on the state of motion of the
emitting source.

Photons emitted by charges moving at relativistic
velocities possess a four-momentum vector that is
rotated with respect to the spatial subspace defined
by the laboratory frame. This property follows
directly from the Euclidean rotation interpretation
of Lorentz transformations developed in [1,2].

4. Momentum exchange with radiation
4.1 Geometric decomposition

Consider a massive particle with four-momentum
P interacting with a photon of four-momentum K.
The photon momentum can be decomposed as

K=K||+KJ_,

where K, is parallel to P and K is orthogonal.

Because the particle’s four-momentum magnitude
must remain equal to mqc, only the orthogonal
component K, can contribute to a change in the
particle’s state of motion. The parallel component
cannot be absorbed without violating invariance
and must therefore be carried away by secondary
radiation or fields (Fig. 3).



‘<. photon
R S momentum
8
proper {\NS’
time
space

Figure 3: Decomposition of photon momentum to
reach an allowed vector addition.

After interaction, the particle’s four-momentum
becomes

P'=P+K,, | P' |=myc.

This corresponds to a rotation of the four-
momentum vector in four-space.

4.2 Acceleration efficiency at relativistic speeds

As the particle’s velocity approaches c, its four-
momentum becomes increasingly oriented toward
the spatial subspace. For photons emitted from
sources at rest in the laboratory frame, | K, |
becomes small, leading to diminishing
acceleration efficiency (Fig. 4).

.......
.....
"
.

proper *, photon

time % momentum
mo 3 .

space

Figure 4: Momentum addition becoming inefficient

at high test particle speeds.

Photons emitted by relativistically moving sources,
however, already possess a rotated four-
momentum vector. In such cases, the orthogonal
component relative to the particle’s four-
momentum can be significantly larger, allowing

more efficient momentum transfer while
preserving all conservation laws (Fig. 5).
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Figure 5: Addition using photon with rotated
momentum vector.

5. Implications for radiation-based propulsion

The preceding analysis suggests that momentum
exchange with radiation depends not only on
photon energy but also on the geometric
orientation of photon four-momentum in four-
space. This observation has potential implications
for radiation-based propulsion concepts.

It must be emphasized that no reactionless
propulsion is implied. All acceleration arises from
momentum exchange with electromagnetic
radiation, and the total four-momentum of any
closed system remains conserved. The absence of
massive propellant merely reflects the use of
radiation as the momentum carrier, analogous to
photon rockets.

The distinguishing feature in ESR is the
geometrical interpretation of momentum coupling
efficiency, not the introduction of new forces or
violations of known physical laws.

6. Discussion

The Euclidean interpretation of four-momentum
provides a coherent geometric picture of
relativistic dynamics that naturally explains the
decreasing efficiency of acceleration near light
speed. When applied to radiation—matter
interaction, it highlights the role of photon
momentum orientation, particularly for radiation
emitted by relativistically moving sources.



Whether this reinterpretation leads to
experimentally distinguishable predictions remains
an open question. At present, the analysis should
be regarded as a kinematic reformulation rather
than a proposal for immediate technological
application.

7. Conclusion

In Euclidean Special Relativity, four-momentum is
represented as a constant-magnitude Euclidean
vector whose rotation in four-space corresponds to
acceleration in physical space. Applying this
interpretation to momentum exchange with
electromagnetic radiation reveals that the
efficiency of acceleration depends on the relative
orientation of particle and photon four-momentum
vectors.

All effects discussed follow directly from standard
electromagnetic momentum exchange and strict
conservation of four-momentum. The implications
for radiation-based propulsion arise from geometry
rather than new physics and should be understood
within this interpretational framework.
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