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The relativistic equations for the deflexion of light, the motion of & particle, end the red
shift of spectral lines, in the neighbonrhood of & sibgle ststionary mass, are rigorousiy
derived on the baais of & strictly Euclidean spoace and an independent time. Only twn ad hoc
assumptions are nseded, in addition to two very obvious extensions of the special theary;
one of these assumptions is already familiar, but the other, involving the masa of a stationary
test particle, is helieved ta be new. The particle equations are derived from s Lagrangian in
the usual way, Expressions for the kinetic and potential energies are aizso readily cbtained.
It i shown (by what is believed to be & new argument) that matter with an infinite Young's
modulns cannot exist, and the fact that actual measuring rods may therefors be affocted by
tidal forces, even when they are ‘uncounstrained’, is considered. It is shown that in principie
observations in the solar system should be made in a timne system which is not that in which
the clocks of distant observatories are synchronized at pregsest; the differenco ig below the
present errors of the best time signals, but not very muel: below. A rigorons expressian i=
derived for the numerical value of the radial co-ordinats r, in terms of quanrities directly
obsarvable by the crew of a space-ship {of negligible msas) moving in a cirenlar orbit at the
Appropriate circular velocity. Further progress along these lines will depend on their
extension to the two-body problem.

It is widely recognized that the literature on general relativity which has grown up
during the last 45 vears contains a number of misconceptions, from which some of
the most eminent pioneers have not been entirely exempt. The ‘spinning disk’, for
example, has been rather imperfectly treated in very many cases, and ‘ideally
incompressible’ matter has been postulated although any matter in which the
velocity of sound exceeds ¢ is necessarily non-relativistic. Even todayv, there is no
universal agreement on the validity of some of the a.rguments that have appeared,
and have then been publicly or privately challenged.

This situation might almost have been predicted: it is easy ta extend the formal
algebra of three-dimensional analysis to four dimension Jre, and reasonably
easy (at least in the simpler cases) to generalize it also rom Euclidean space to
non-Euclidean; but it is extremely difficult to balance this algebraic analysis with
any sort of conceptual approach, once the familiar landmarks of everyday ‘phy-
sical’ thinking are lost. There is a very real gap between those who appreciate the
beauty and symmetry of the formal mathematics so keenly that they may even
deny any need for ‘visualization’ altogether, and those on the other hand whose
natural interests and abilities lie in the field of specific observation and measure-
ment, but who are, almost as a consequence, overwhelmed by the conceptual
difficulties of four dimensions and curved space, and s0 cannot consider the funda-
mental aspects of relativity with the appropriate confidence.

A direct bridging of the gap does not seem easy to achieve from either side. But
it might be ¢ircumvented, if one could carry through an entirely fresh derivation
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General relativity in Euclidean terms 61

of the equations of general relativity, within the framework of a rigorously Euclidean
space and an independent ‘Newtonian’ time. This has proved, on trial, to be quite
practicable. And the result is that the experimentally minded can now, it may be
hoped, find a firm path through to the accepted equations, without encountering
the old conceptual difficulties at all, while the mathematically inclined, though they
may temporarily sacrifice everything that seems to them most attractive about
the theory,will see a quite straightforward road back to their own familiar ground
at the end of the excursion. Indeed, if the crucial experimental results predicted
by the general theory, together with the increase of inertial masses at high speeds
(which was already known when that theory appeared), had been precisely known
from observation before the Michelson—Morley experiment had been performed, it
ig possible that the entire theory might first have developed along the lines now to
be followed, once the results of that experiment had been explained by the con-
traction hypothesis of Fitzgerald.

Some steps along this road were taken quite early. Eddington, for example
{1920, p. 54), discussed the deflexion of light in terms of a variable ‘refractive index’
in a space which was, itself, Euclidean. It is true that he worked only to the first
approximation in this, and this restriction tends fo obscure the question whether
Euclidean co-ordinates are or are not completely satisfactory for a rigorous treat-
ment; but it appears almost certain that his approximations wers made only for
algebraic convenience, and that he recognized the Eunclidean approach to be
logically permissible, even though the relativistic one which he later substituted
seemed to him more attractive mathematically.

There are in fact two effective, but mutually exclusive, lines of argument, of
which only one has been well explored as yet. It is possible, on the one hand, to
postulate that the velocity of light is a universal constant, to define ‘natural’
clocks and measuring rods as the standards by which space and time are to be judged,
and then to discover from measurement that space-time, and space itself, are
‘really’ non-Euclidean; alternatively, one can define space as Euclidean and time
as the same everywhere, and discover (from exactly the same measurements} how
the velocity of light, and natursal clocks, rods, and particle inertias ‘really” behave
in the neighbourhood of large masses. There is just as much (or as little) content for
the word ‘really’ in the one approach as in the other; provided that each is self-
consistent, the ultimate appeal is only to convenience and fruitfulness, and even
‘convenience’ may be largely a matter of personal taste; but neither the fruitfulness
of the Euclidean treatment nor its self-consistency can be tested until it has been
adequately developed.

The present discussion deals only with the case of asingle mass at rest at the origin,
and with the consequences of Einstein’s original equations @, = 0. It may, how-
ever, be hoped that it will point the way to a similar restment for two, or more,
masses. Presumably, in that case, a stage will come where appronma.tmns become
unavoidable; the present derivations, however, are rigofous, =

It will be convenient first $o summarize the relativity results which must be_
reached, if the proposed pla.n is to claim to have gucceeded. Most of the equatnons
are readily available, free of all approximation, in the form they take when the
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62 R. d’E. Atkinson
line-element in spherical polar co-ordinates (ry,&,¢) is the ‘Schwarzschild® one
given by ds® = 7l — y1dr — r3(d0°+sin?0dgY) M)

wherey = 1 —2m/r,. For our purpose, however, it seems better to use the ‘isotropic’
solution; this is less familiar, probably because it is often a little less elegant, and
some of the ‘isotropic’ equations may even be hard to find at all in the literature.
The derivation of all of them will therefore be sketched, for completeness; but it is
not essential to the main purpose of the paper. Essentially, these derivations may
be omitted, a.nd it may be taken for gra.nt,ed that the accepted relativitv position,

ngorously sta.ted by equations {12) {(15), (16), (17) and (20). (It is convenient to
treat (12) separately; but it is, of course, the intergal of energy, and can be directly
derived from (15) and (18).)

The isotropic equations may be obtained from the equivalent ‘Schwarzschild’
ones by means of the substitution

ry=r{l+y)? (2)
where ¢ = m{2r. In addition to making this substitution, we re-introduce the
constant ¢ (= 3 x 10"%cm/s) explicitly, i.e. we replace di? in (1) by ¢2df®. This equa-
tion then becomes

dg? = (i ;i)z erdf? — (1 + yr)*[dr® +r3(d60* + 8in? 8dg*)], (3}
and the exact meaning of ¢ is f3/2rc? where M is the central mass in grams and fis
the constant of gravitation in c.g.s. {~ 667 x 10~¥g~1em?®s2). The four'geodesic
equations, which describe the motion of a test particle, may be obtained from their
Schwarzschild equivalents, given, for example, by Eddington (1923, pp. 85-6),
in the same way. If preferred, they may of course also be obtained directly, by
inserting the g, of (3) into the four equations of a geodesic,

d*z g Cﬁ’p. 0g,a Cgp) d:c dz,
4+ X =0 4
ds? +A,';',%gﬂ( oz, 89:‘, oz,) ds ds (4)
(x=1,...,4); taking z, = r, 2y = 0, 2; = $, x, = {, we have
G11 = —(L4+9)% Goa=—(1+Y)r3, g =—(1+9) r2sin®*6,

gau=(1-¥2e/(1+¥)? g,.,=0 for v

and therefore gt = 1fg,;, ete.; and since dyr/dr = —yrfr the resulting equations wilt
be found to be

d% 8 (c_l_;:) 1-y (dﬁ) 0 (d;ﬁ) + 2yc? 1—3’/ (dc) =%

ds* r(1+¢)\ds, l+g& ds 1+¢ ds r (1+¢) \ds
{5}
d6 21-ydrdd . d¢)2_
d.gz+F_1+y';$a§‘sme"°59($ =0, (6)

d?¢ 21—ydrdg dgdg g
R i Gl ds ds T (7)
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and f‘f:{ i hpj : : I =t drde = . (8)
(s- r (l—'_;";\L—-f‘(l)t_L

As in the Schwarzschild case, if we choose axes so that # = 47 and dffds =0

initially, {6) yields d%f{ds® = 0 and so § = 7 permanently; we can thus simplify

(3), (8) and (7} by putting # = 7 and d&{ds = 0 there also,

The observational consequences which follow from these equatioms, in the
relativistic treatment, are all ultimately expressed in equations from which ds
has been eliminated. For our purpose, it is simplest to undertake this elimination
atonee, and this can be done without any realloss of content. Equation (8)integrates
directly, giving 1_?’9)2 & ‘

(1_'7_1;, T

srhere B is a {(dimensionless) constant;* and since we can rewrite {3) as

(1)= (}:“V*)"f2~(lfﬁi‘t-"l- (10)
\di 14y,

where v = (dri4r23g%Ede (1)
(i.e. v is the ‘co-ordinate velocity '), we obtain instead of (9) and (10),

1-¢ [,  (+9)so*]t_
'IW{l (1-¥)c ] ™= )
To eliminate ds also from (5) and (7) we use the identity
d: _ dt*de_(ddt dt d -
dﬁ( )a?é* Etd_a)d.sdr A
-
. A (dr\[dd 4y i dr d
. 4
or, with (9), = o) e mwam g (<)
since df{ds never vanishes, the new equations are then
@ 19 (d_r) l—v(dsﬁ) f1-¥ _o
" vy a-p\a) "1xg\a) T Q+y)y '
&g 2 1-4f+y? drdg _ )
and T AT - DT & (16)

These two equations involve only two spatial co-ordinates and the time;
together with (12), they coritain all the essential statements that relativity makes
about the motion of a test particle in the neighbourhood of a single stationary mass.
Part of our task, therefore, will be to make such arbitrary assumptions, in the frame-
work of a strictly Euclidean space and an independent time, ag will lead rigorousty
to these equations. One might expect that the assumptions, sinee they will in any
case be of an ad hoc nature, would include some arbitrary law of gravitation differing
a little from the Newtonian, and perhaps also some modification of the laws of

* Tt is perhaps a little confusing that Bddington used ¢ for this integration-constant. The
notation 1+¢ instead, introduced at (34) below, will be found safer, a.t lemt if one wighes to
re-introduce the velomty of light explicitly.
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dsmnamics as such: hut the path we actually take involves instead assumptions on!
about the velocity of light and the mass of a test particle. Nothing either new orewv:
old is assumed {at least expressly) about gravitation, and we shall find that the on!
modifications to the accepted laws of dynamics are a couple of very obvio:
extensions of formulae already familiar from the special theory.

In addition to reaching equations (12}, (15) and (16) for the motion of a particl,
we have also to reach the rigorous relativity formulae for the deflexion of ligh'
and for the red shift. {Not, of course, the red shift for a distant nebula; we ar
concerned here with the “solar’ or ‘white dwarf" red shift.) This effect, if expresse.
as a ‘red ratio’, v,’v sayv, is given in the isotropie system by

1 -4

v 1+ p’r;
v, is here the frequency, when its radial co-ordinate is r, of 2 natural system whos:
frequency is v when r = o0,
Arigorous equation for the deflexion is given by Eddington (1923, p. 90)in the forn

d2u,/dé? +u, = 3mui,

where u; = 1/r,, i.e. in terms of the Schwarzschild co-ordinate system. Multiplvin.
Ly 2du,, and integrating, we have

ul+ (du,/dd)® = 2mui + 4,

{so that we also have 21y = mu) we obtain

ud+

\dp
Equations (17) and {20) thus complete the challenge which faces us.

We begin by deriving (20}. In the relativity treatment, the ‘co-ordinate velocity
of light at any point is obtained by setting ds = 0 in (10); v then refers to a light-
pulse. For our purposes, this co-ordinate velocity is simply ‘the’ velocity, ¢, say.
and we therefore adopt, as our first ad hoc postulate,

- (du‘)'-’ _ 4 (1+ {J’f}"'

PR . (21)

where ¢, is to be understood in the most elementary and straightforward sense,
as the actual velocity of light in Euclidean space, at the distance r from the origin,

If, now, P is the perpendicular from the origin onto the tangent at some point
on a light-ray, then, as in Eddington's earlier treatment (1920, p. 54), since the
‘refractive index’ ¢/c, is stratified in spherical shells about the origin, Snell’s law
may be written Pcle, = const. (22

for all points on one ray. And since
1 o fdu\2 Aat
—_2= u“+(d—¢) ("),"

we have (20} at once.
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The constant 4 is readily evaluated. At the point of closest approach, n = u,
say, we have du/dg = 0; accordingly

A= 1(1__._.’_/’_9.)__ u= \ 24 ]

(1+3)¢ °
and (20) is therefore

To the first order in mu {or 2¢7) this is
(1 —dmu) 1+ (du/dd)?] = (1 —4mu,) uj (26)
and, as may readily be verified, this is satisfied {to the same accuracy) by

U~ U, cos &1 = 2muy) + 2mug (27)

if we take ¢ = 0 when u = u,. This is equivalent to
z = ry+2m—(2mlr,) J (22 + ¥7) (28)

{where we have written rcos ¢ = z, r = /(22 +»%)). i.e. a hyperbola whose asymp-
totes are Z % 7o+ 2m & (2mr,) Y. (29)
The angle, D, between the asymptotes is the total deflexion, so that

D ~ 4m|r, (30)

in agreement (to this order) with the Schwarzschild result; in particular, there is
of course no discrepancy by the factor  which, as is well-known, characterized the
primitive ‘Newtonian’ treatment.

We turn, next, to the task of deriving the ‘geodesic’ equations. By analogy with
the special theory, we take it for granted that the (inertial) mass of a moving test
particle will be greater than that of the same particle at rest, at the same place, by
the factor (1 —2%/¢?)-1, i.e. the familiar expreasion, but with the local value for the
velocity of light. (Clearly ¢, must be the limit, at that point, above which no velocivy
can go; other more complicated formulae could also guarantee this, but there is no
need to try them.) Accordingly, if the mass of the test particle, when at rest at r,
is z,,its mass when it is in motion with the velocity v will be taken to be g, (1 —v3/c3)—t;
we assume also that its total energy, H, is then given by

H=p(1-v¥c2)tc

»'-71—’{’)"'[ (1+‘.-3’3“"-‘T‘5‘ 21)
= ’[rc“ ¥ 1__ A .8 - {.'31
LS aFprl T —ypre ”
If H is constant, we may write
H = pc¥{]l +¢) (32)

where p and ¢ are constants; # has evidently the dimensions of & mass, Thus

f —1r\2 L )8 T —4

¢ (1 .-j“? [1_(1-‘:{}.'_:} AT (33)

k(1+y)° (1-y)e

w
-
2]
~3
M
e
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This equation will be identical with (12} if (as is naturally permissible) we adju
the two arbitrary dimensionless constants so that

J]_'} = 1-'- €
and if, in addition, sl = (1 + P (1—1); (3

we therefore adopt (35) as a second ad hoc postulate, in addition to (21), so th
[31) becomes 1‘—'7Jr {I _.L‘ler)a ’J‘gjl 4&‘

II = e~ TAD .5

vyl (-yrc

we can also rewrite (12) as
ay L

L—V(l_?J =1+e. (3
Putting ¢ = 0, i.e. r = o0, we see from (35) that x is the value of g, when r = »
and since g, refers in any case to a stationary particle, 4 is the test particle’s mas
when it is stationary at infinity.

YWe now assume that we can construct, and use, a Lagrangian in the standar:
way. We therefore write

1 fe f
1 —1
1 W

L=p.v-H (3c
= ull f)ﬂ‘ Qll_:_;,)s—r?l_y
i ( - 1-¢  1+y
o 2\ 44
_‘Hc'-'l I’:( —b—z) (3
1+ c;
__#Czl—!-’f[l_(1+;’f)°f=+rzs5'* (40
) e AL
together with c%%—% =0, (41

where g denotes, as usual, a generalized co-ordinate; and we have to show that thesc
equations reduce to (15), and to {16). It is convenient to note the identity

d Yn—m)+n -rm} ¥
—_ YAt nl = " n A
which finds repeated application in what follows.
Taking first the ¢-co-ordinate, we have, since 35L/0¢ = 0,
d oL
dj}—a = - . {43)
L ! -t 8
-y (1+y)° ]
o 0. 44
' [ i,’f( b) (1-y) s (
With (37), this gives {?—[8* 43 r°g5] =0 - (45)
ie. PR S A (46)

r(l+y)(1-¢).
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which is exactly the ‘¢$-geodesic’, (16). This equation, as is of course to be expected,
is simply o statement of the conservation of angular momentum; even without
help from (43), we would naturally write

I, ( ] — Z—;} irﬂf]—’? = const., (47)
which is the same as {44). Thus our assumptions have now given us the deflesion
of light, and also have given expressions for the conservation of energy and of
angular momentum which agree exactly with the appropriate gecdesic equations
of general relativity.

Already at this stage one advantage of the new point of view has emerged; the
physical significance of {47) is very much clearer than that of the integral of (7},

namely (when cot& = 0)
(1+ ) r¥(dd/ds) = const., (38)

or, ag it usnally appears, rHdd/ds) = A. (49)

Part of Eddington’s comment (1923, p. 87) on the difference between (49) and the

familiar Newtonian expression
(dg/df) = R (50)

was ag follows: ‘the difference between ds and &t [in our notation cdf] is equally
insignificant, even if we were sure what is meant by dt in the Newtonian theory’;
and while it is perhaps a little unfair to quote this nowadays, there may be some
who would still accept it. In point of fact, although there is, as we shall see more
clearly below, an ambignity (but no lack of rigour) in the choice between ry, r, and
a whole family of alternative heirs of the Newtonian radius vector, there is no doubt
at all about ¢; both in Newtonian mechanics and in general relativity, ¢ (though it
may of course appear in the g,,) is independent of the spatial co-ordinates in
exactly the same way as they are independent of each other; any observerstationary
in the system in question will record his observations in terms of his three spatial
co-ordinates and this time. ‘Simultaneity’ for such an observer is, by definition, the
result of putting ¢ = £, = const. for all 7, §, ¢. Neither theory regards natural clocks
as necessarily keeping this time everywhere, bnt the observer must be supposed to
be able (at least in a static system) to station suitable clocks anywhere, and to
regulate them as necessary until they do all go at the same rate as his standard clock,
and so show this time. {For our purpose, the problem of synchronizing them does
not arise, so long as we are concerned only with df, but in principle the observer is
supposed to be able to do this also.) The difference between {49) and (50) is not due
to any requirement thaf the independent variable of particle dynamics ought now
to be time measured in some new way—ds, indeed, is not even eligible at all, since
it is not independent of r; the difference between (47) and (50} arises entirely, and
quite naturally, from the variability of the test particle’s mass, (1 —v2/c3)+; this
variability is due partly to its position and partly to its speed. If we now reverse
the whole argument, we may say that general relativity appears to imply our
assumption (35) just asitimplies {21); however, (35) does not seem to have been given
. explicitly in any previous work. . . .. .
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Whitehead (1922, p. 102) does indeed give in effect the first-order approximation
to it; but his derivation begins with a treatment of the many-body problem (and
seems difficult even apart from thisy and some of his conclusions also differ from
Einstein’s. The rigorous form (35) is tied t6 a definite choice of the isotropic system
(as opposed to the Schwarzschild one and all other equivalent ones), and White-
head’s treatment is avowedly approximate.

For the r-component of the geodesic, we have, first

oL 1y ( v\ (1Y) :

?’F"’wlw(l c,;’) A=ype e
+ 6

= u(l+e )EI LAY (52)

by (37). Differentiating, with the help of (42) gives

L AP . i R :
@z M Oaoe | T T aEma-9 (53)
Similarly, after some I‘eductlon, we have
E‘_-{J (1+P) 2y 1-r 2 1—tr 4, 20 1—yr 35
=~ TG [ IR e ] O
Thus, when ¢ stands for r, (41) becomes
2 g | fpdie: 1/ e 1 =1
Y e Vg, et -y n

KR e M T A (R
which is identical with {15). Since we have now derived (12), (15) and (16), we have
derived the rigorous theory of the advaace of perihelion (and all other ‘relativistic
perturbations’ such as the lunar ones, in so far as they can fairly be derived from
a one-body solution at all), strictly within our Euclidean framework.

Asiswell known, attempts were made very early to explain the perihelion advance
in this framework, simply by the increase of mass with velocity as given by the
special theory, i.e. with ¢ instead of ¢, and making no allowance for #,. The present
analysis shows that although these attempts were bound to fail, they were in fact
much more nearly appropriate than has generally been supposed.

The algebra leading to (55} may possibly appear a little cumbrous, but it is an
instrnetive demonstration of the power of the Lagrangian method. The derivation
of (47) did not need the full Lagrangian panoply at all; it reduced to an apparent
triviality, as it so often does. But the radial equation is more difficult; even though
the right-hand side of (51) is plainly the radial component of momentum, the
attempt to get further by defining force as rate of change of momentum seems beset
by pitfalls. It will be noted, for example, that terms in #2, all of them small by
comparison with the ‘Newtonian’ ones, arise both in {53) and in (54).

There is, however, no difficulty about getting explicit expressions for the kinetic
and potential energies directly. The kinetic energv is naturally. as in the special

theory. K = p,cf[(1—2c)t—1] (56)
= pe{1 46— (1= )1 +)]
= pe?le+ 2 /(1+ )] (57)



General relativity in Euclidean terms 69

and pc% is thus the kinetic energy of the test particle at infinity. It is also clear
from (37) thatif € = 0, v = 0 when r = ¢0, so that this is the ‘quasi-parabolic’ case;
if e < 0, v is imaginary when r = o0, i.e. the ‘quasi-elliptical’ case. The “velocity of
escape’, ,, obtained by putting € = 0 and » + coin (37), is

= = ’:} 9. I
v, = {I_ i:jr}i “C
1—y  [(2f3) s
=l U7 ) @
The potential energy, if we do not include the rest-mass energy, is
U=H-K-—uc®
- — 21+ ) (59

and vanishes at infinity; if we prefer to include the rest mass, it is of course
U, = pc*(1=yn)[(1+). (60)

The fact that the potential energy (per unit particle mass) is definitely not
- 2yr¢? (i.e. —fM [r) underlines a danger which seems to have been ignored in much
of the literature. It is quite common to find —m/r spoken of, simply, as *the poten-
tial’, without any inquiry as to what the exact formula for I/ may be, in the par-
ticular gystem in use. The practice is numerically harmless, if one is only working
to the first order in mjr, but it could lead to error if it were taken rigorously. {In
general, U does not satisfy V3I/ = 0 in empty space, and one cannot resort to
spherical harmonies without further consideration.)

In the case of a circular orbit (F = # = 0), (54) gives

g e gca 21;'/::3 = r,'f 2 :
Y
go that (37) becomes 14 (1~3) (62)

G TR Tir
expanding to the first power of ¥ we see that in & circular orbit
ex—Y (63)

and so K x pctfr/(1+y¥) = —3U, approximately as in the Newtonian case.
We may also expand (55) to one higher order than the Newtonian. We have,

rigorously,

MLy M s M
e R Sl el
or, apprommabely, -
rorgrr B R LG |8 3 (rsﬁ)] (65)

the right-hand side is of course zero in the Newtonian case, The three terms in it
will, in general, be all of the same order of magnitude. Equation (85) was given
by de Sitter (1916} in essentmlly this form hJs notatlon Is, however, a httle
‘difficult; and he did not give (64) exploitly s ¥ v fe b e i e e s
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It may at first sight appear surprising that Newton’s inverse square law should
emerge, as the zero approximation, from assumptions about the velocity of light
and the mass of a particle in Euclidean space. The reason does not lie in any par”
ticular powers of 1+ and 1 — 3 that may have been adopted in the formulae for
¢, and g_, but rather in the nature of ¥ itself, and in the way we have (quite natur-
ally) constructed H and L. We may in fact repeat the analysis for the more general

case in which e = (14+¢Y (1-¥)*c (66)
and P = (1+9Y (19 P p; (67)
equation (55) then becomes
f_!,_?B(L'—j)+(p—f)+{3(k+j)+(p+f)}i,5_‘f2
r (1+y)(1-9)
1+ (k=g+p-D¥+(k+j+p+1-1) !5",.9:;2
(1+¥)(1—-9)

lrpd
+ 52 [2(k—5)+ (P— D)+ {2(k+5) + (P+D}YI L+ PPV (1—y)*-1 = 0 (68)

and {except in the special case where 2 +p = 2j +1) the last term will always be
FfMjr? in the first approximation, where F is a constant. [The constant will be
unity if 2(k—j)+p -1 = 2; and if we have (from the deflexion) % —j = 4, we must
then also have l—p = 6, 1.e. ¢, = (1 —4¥)cand g, ~ (14 6y) u.]

‘We have still to derive the red shift. We consider the case of a frictionless fiywheel,
of mass x and radius a when it iz at infinity. We suppose it to be given an angular
velocity, @, which is so small that all relativity effects, including those involving
cross-products with v/c and ¢, are negligible; and we suppose that after this it is
never subjected to any further couple. Let it be lowered into the ‘gravitational
field’, brought to (translational} rest there, and then (if we wish) released. Its
mass is now g, and we suppose that its radius and angular velocity have become
a, and w,, respectively. If its angular momentnm is to be conserved, we must have

a*w = a;u (l+y)Pi(l—-y). (69)

We consider that euch a fixvwheel, free from all couples, is an ‘ideal clock’, i.e. that
all natural frequencies will behave in the same way as w,, so that w,jo is the red
shift. In order to obtain its value, we do what we have not, so far, done (at least,
explicitly): we assert that if a local observer measures the velocity of light, using
the actual radius of the disk as his unit of length and the actual frequency as his
unit of frequency but considering that they are still a and «/2r instead of a, and
,/2m, he will get the value ¢ instead of ¢,. Accordinely

e

awe, = a,w.c, (70)

or 0% = al w1 )81 —10)%, (71)
Combining this with (69) we have
W fw = (L= )1+ ) (72)

in agreement with (17). We also have

o

-1
—

a(l+y)? =a, (
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and since the wheel’s radius is not affected by it very slow rotation, ali lengths
must be supposed to contract in this same way, in & region of strong gravitational
potential. No direct test of this effect has ever been proposed, but we shall return
to it below. " :

An alternative proof of (1 T), which doesnot rely directly on (70), may be obtained
from the conservation of energy as follows. We consider a system consisting initially
of & stationary atom; of mass z, and & quantum of frequency », both at infinity.
The total energy of this system is of course H = pe? + Av. We supposs that the atom
absorbs the quantum, so that its rest-mass becomes g+ kv/c?, and that it then falls
in to the radius r, still in the same excited state, i.e. still with the same rest-mass.

Its kinetic energy is niow K = (s hvje)e 20)(1 +1) (74)

by (57), since € = 0 in this case. Let this kinetic energy be given up (without, of
course, being destroyed) to some surrounding matter by collisions, and immediately
after this let the atom return to the unexcited state by emission of a quantum of
frequency ¥,. This quantum will escape to infinity still with this frequency (in terras
of co-ordinate-time), since we cannot suppose more ‘crests’ of a wave-train will
pass one point than another, per second. {The time system is the same everywhere;
thus a frequency change occurring after emission, while the train is on it way between
two fixed points, would mean that ‘crests’ had o accumnulate indefinitely, in the
intervening space. In static conditions, a frequency (unlike a wavelength) cannot
be changed en route at all. It can of course be changed by reflexion at a moving
mirror; but this changes the space between the two points correspondingly. It
can also (Atkinson 1935) be changed if circularly polarized light is passed through
a half-wave plate rotating in its own plane, but thisis a rather special case and, even
8o, is not a statlo one.) The energy of the stationary atom, after emitting the
quantum, is x,c;, and the total energy is therefore now
H=pc+h,+K. (75)
Inserting the values of K, g, and c,, we have
i : ;:7: + kv, + (uc® + hy) 1%..1{;'; = uc*+ hv, (76)

ie. v, =v(1=9)/(14v) (77)

Jct

in agreement with the previous resnlt,

T4 will be noted that this proof has not only avoided appealing to the constancy of
the measured velocity of light, but has also not used the conservation of angular
momentum (i.e. the invariance of A); it has, however, still used (35).

\WWe have now shown that the exaet relativity equations can be given an inter-
pretation in terms of a strictly Euclidean framework; but the question may natur-
ally be asked, how any specific values of r are to be precisely identified in practice,
if our measuring rods are ‘wrong’. This question arises, of course, in relativity theory
also; equation (3) is itself rigorons, so that there must be rigorous ways of assigning
specific values to 7, and to ¥, if it is to have a meaning, but ds is what is actually
measured. The first answer certainly must be that since the equations are the same
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in both cases, any expenment which really can Identlfy an exact value of r, for use
in the relativity treatment, will also do just the same in the Euclidean one. But
the new point of view may posmbly suggest other experiments, or other criteria by
‘which to condemn or accept any experiments suggested. And at leagt it bmngs ont
into the open the apparent paradox that although the Schwarzschild co-ordinates,
the isotropic ones, and all others of this infinite family, are certainly identical in
respect of 8 and @, and certainly not identical in respect of r, nevertheless; each of -
them is, by itself, strictly Euclidean. (We have not actnally demonstrated this;
but it can in fact be accepted* that if the refractive index, ¢fe,, and the mass, p_, are
suitably modified, the assumptions we have made for the isotropic solution will
also be satisfactory for the Schwarzschild one, or for any other of the family, and
this inecludes the assumption of Euclidean space, in each instance.) Before we attack:
the paradox, or treat any question involving spatial surveys in general, it seems
desirable to dispose of the ‘ideal incompressible material’ which has sometimes been
specified for measuring rods that have to be exposed to gravitational or tidal forces.

It is fairly generaily agreed, nowadays, that such ‘ideal’ material canmot exist.
The commonest proof relies on the theorem that if the elasticity is infinite, the
velocity of sound will be so as well, and yet this must not exceed ¢. However, the
bulk modulus (which is the one most usually discussed) raises doubts as to whether
the particle density or the proper density (or some other ‘density’)isreally what will
determine the velocity of sound; and if we discuss measuring rods it is in any case
Young’s modulus which should be considered. The following proof (which is
believed to be new) avoids all discussion of particular elasticities, and of sound
waves; it is slightly simpler to give it in ferms of the rela.txv:ty wewpomt but,
either could be used.

If we construct a tetrahedron, by means of six rods joining in a.II possnb!e ways
four non-coplanar points of which no three are collinear, we can vary the length of
any rod arbitrarily (within wide limits) and the tetrahedron will adjust itsel{
correspondingly, This is true whether or not the space is Euclidean, and we cannot
in general find out anything about the metric of the space by measuring these six
lengths alone. I we add a fifth point (avoiding collinear and coplanar cases as
before), we can join it to any three of the earlier points similarly, and can then still
vary any of therods without conflict; but assoon asthese ninelengths are all definitely
settled, the configuration of all five points is fixed, and the length of the one re-
maining connexion still be to made is already calculable. In general, only one
particular length will do, in any particular space. If we calculate this length on the
assumption that the rods have been assembled in Euclidean space, and if on trial
we find that thislast rod will not fit, then the space is not Euclidean, and the magni-
tude of the misfit will give us one item of information about the actual metric;
increasing the number of points, and of cross-connexions, will increase the infor-
mation which can be obtained. If we now correctly compute and assemble such a
structure in Euclidean space, and then move it into non-Euclidean, we have the
following mutually exciusive possibilities: (¢) the comparison between standard
(unconstrained, stationary) measuring rods and the rods of the assembly tells us

* 1 am indebted to Professor Pryce for pointing this out o me.
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that the measured intervals between the five points have changed, so that they no
Ionger fit cur computations, and the space is indeed now non-Euclidean; or {5} the
rods of the assembly are ‘ideal incompressible’ rods, of which the definition is that
the comparison between their lengths and those of unconstrained stationary
meaguring rods always gives the same answers; in this case, measurement neces-
sarily reveals that the space is still Euclidean although by hypothesis it is not. Thus
our supposedly ideal matter is a relativistic impossibility; not only can complex
(‘over-connected’) assemblies of it not he moved from Euclidean space into non-
Euclidean, but they also cannot move, in non-Euclidean space, from the point of
original assembly at all, except in certain very particular ways (e.g. in a suitable
circular orbit if the space happens to be spherically symmetrical). ‘Ideal, incom-
pressible matter’ would allow us to construet a veritable ‘Mahomet’s coffin’,
unsupported, but unable to fall down, and its behaviour would be just as miraculous
as it would in the Newtontan case: it would involve a violation of the laws of physics.

We must, therefore, accept the fact that any experiment which is proposed for
determining specific values of by means of measuring rods will have to make do
without ‘ideal’ ones; if tidal forces can stretch or compress them (and they always
can, to some extent, if the measuring rods are free), then the change of length will
have to be considered, and allowed for if it is appreciable. There are suggested
experiments (impracticable, but conceivable) where the effect does not enter, or
where it can be arranged to be negligible; but it is generally agreed, nowadays,
that it is better, whenever we use any mea.sunng rod at all, to calibrate it by etalon-
interferometry, in situ.

- The calibration can be undertaken if we assume a value for the velocity of light
{¢,) and also for the frequency of the source emitting it, so that we are sure of the
wavelength. (Wavelengths of light emitied from a local source obviously contract
according to the same formula as ‘measuring rod’ lengths, i.e. :

A(L+y)E =2, (78)

but those from other sources vary as ¢,{v, not ¢,/v,.) This rule effectively brings all
methods which use measuring rods (in so far as any are really proposed, for the solar
system as a whole) into the same class as the methods already familiar to astro-
nomers. The astronomer never measures out space by throwing up large numbers of
meaguring rods and arranging that they shall all be stationary at the tops of their
trajectories at some one specified instant, and shall then just touch end-to-end and
mark out some ‘over-connected’ stracture whose properties can be used to discover
the metric of space: he observes with suitably disposed theodolites and transit
circles, and allows for any refractive index which he believes is present, and for any
elapsed light times, and he will have no objection to allowing for frequency changes
too, where an actual length is needed, e.g. as the baseline for a geocentric parallax.
And we now have the answer to our apparent paradox: any observations we may
malke for determining specific r-values, if serviceable at all; are gerviceable whatever
(admissible}. assumptions we may make; but the conclusions which will be drawn
from them will depend on the refractive index used in reducing them (and, in some
cases,.on, the va.lues assumed for natuml wavelengths) . If we deﬁne the, refractwa_,_.__,
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index as unity everywhere we find out that space is non-Euclidean, If we define
space s Buclidean, we find that the radial co-ordinate of our Euclidean geometry
is r if we reduce all our observations with the refractive index (1-+#)%(1—1),
and we find that it is r, (very nesrly r 4-m) if we use the anisotropic refractive index
appropriate to the Schwarzschild solution. And similarly for any other admissible
solution, The different radial co-ordinates should not be regarded as each of them
approximately the radius vector of an approximately equivalent Euclidean space;
taken in conjunction with the appropriate formulse for reducing observations, any
one of them (separately, of course) is rigorously a Eunclidean radius vector as it
stands, The one we have used here is singled out by the fact that the appropriate
refractive index is isofropic, and the convenience of this has in fact been of some
belp; but it is neither more nor less rigorously Euclidean than the others on that
account.

We now consider, from the new viewpoint, a preliminary problem in planetary
kinematies which has perhaps not been treated in the general theory. If we have
two planets moving in opposite directions round two almost-coincident circular
orbits, then near the moment where they are passing each other the observations
which either may make of the other can be related, for a short while, just as in the
special theory, i.6. by a simple Lorentz transformation; this means that each will
consider that the other’s clocks are going slow. But certainly when they next meet,
half an orbit later, they will agree that the loss has somehow been made up again;
by mere symmetry, neither can really lose on the other at all. Since the rate which
one ‘observes’, for a clock moving past one’s system, is intimately bound up with
the way one reckons ‘simultaneity * within one’s system, each observer will euspect
that he has chosen a method of synchronizing his own clocks which is not really
very advantageous for discussing planetary observations. And this is trune. Each
observer, in the special theory, synchronizes his own clocks in a way which is
equivalent to assuming that the (one-way) velocity of light, as it passes him, is the
same in both directions. If a planet’s orbit were a material circle, moving round
the sun at the proper circular velocity for that distance, it would be possible for an
observer to station clocks all round it and to synchronize them, either by light
signals (making that assurption) or by actual transport of a chronometer. When he
had finished, a stationary observer looking at the whole picture would see that any
two of the clocks, separated by the small distance x {as he measures it) would be
out of agreement by

A g
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where v is the velocity of the supposed material orbit, i.e. the circular velocity for
that radius. Since these discrepancies are all in the same direction, the last clock
will differ from the first by their sum; and since these two elocks will be adjacent,
the observer moving with them will see the closing error just as undeniably as the
fixed one does. In the case of the earth, v/c ~ 10~*and Zxfc = 27 x 499 5; the closing
error is thus 313 ms, and even without the comments from the other planet the
observer would decide that his procedure was unsuitable. The satisfactory way,
he would certainly conclude, is the one which is symmeftrical for both planets, and
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which, if one works it out in detail, produces no closing error for either, namely to
allow for the velocity of light in the non-relativistic way. To the first order, this
means that the travel times for which radio time signals have to be adjusted, when
one intercompares clocks at different observatories, should be evaluated as though
the velocity of propagation were not ¢, but ¢ —r, where ¢ is the component of the
earth’s orbital velocity in the direction of propagation, since this is in fact the way
an ‘impartial’ observer, stationary in the solar system, would actually work it out,
to the first order in vfc. (To the second order, one would of course have to consider
also the difference between ¢ and ¢,, between 4 and a,, and between v and v, ie.
quantities of the order 1, or v?/c?, but this complication can be omitted.) The travel-
time for the earth’s diameter is about 42 ms, and the component of v in the appro-
prietc dircction isntmoct 104 2; elock compariscns are not yet made with accuracies
of 0-004 ms (and would probably be seriousiy disturbed by vagaries of the ionosphere
if they were), but the present accuracy does reach 0-1ms (p.e.), and the correction
is not entirely visionary.®* We may add that this way of synchronizing clocks is in
agreement with the method now used by the Nautical Almanac for calculating
stellar aberration, so far as that has been taken; it is calculated as though the
barycentre of the solar system were ‘at rest in the ether’ and the earth were “in
motion through the ether’ at its calculated orbital speed.

We turn, finally, to the problem of giving a rigorous meaning to the radial co-
ordinate r. As we have already pointed out, this problem is logically of fundamental
importance in the relativistic presentation and in the present Euclidean one
equally: equation (3) is rigorous itself, and it is essential that » and i should have
rigorously defined mesnings to use in it. The statement that the co-ordinates
{r,8,@,t) are mere arbitrary identification numbers, which is sometimes met with
in the literature, is correct if it means that arbitrary analytical substitution for-
mulae can replace any such system by another one, and that the resulting equations
in the new system will be correct if those in the old one were; but it cannot possibly
be regarded as implying that any arbitrary identification numbers could be used
for r, 6, & and ¢in (3), orin (1), as they stand. For any given “accessible’ dimension,
such as the radius of a circular orbit in which a particular test particle may actually
'be moving, there is necessarily one value for r, and one only, which can be inserted

in (3). It might possibly be suggested that although this is true it does not follow that
some experimental method must actually be specifiable which could in principle
determine r with an aceurscy m/r (so as to distingnish it from r,) or better; but this
would be a very unsatisfying viewpoint and is not in fact forced on us.

A method which has sometimes been suggested is simply to measure out the
actual geometry of a spherical surface, by measurements confined to that surface;
these will naturally give its curvature, and in the particular case of the Schwarzschild
solution (1) the radius so found js exactly r, since tangential measurements are

* Since this was written, successful clock comparisons hetween England and America have
been made, via ‘Telstar’, with ten times thia accuracy; the satellite uses frequencies high
enough to penetrate the F. -hyer eamly, a.nd 1onoephenc affects are pmhcaﬂy neghglbla
Tt is still true, 6f course, thst the Apparént movement of any actusl p!snet in 4us is far too
small to ohserve, but the same is not necessarily true of an artificial satellite of the earth,
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“correct in this gystem. In the isotropic system, a measuring ro tened (73) in
“* 3 ratio (1 +¢)~* when pointing in the tangential direction {0r auy vcher) and the
dings will thus all be to6 lirge; used uncorrected, they will give {1 + 17)2, and this
course i3 in agreement with (2). The observations, however, carmot actually be
performed; not only is no such material aphere available, but also it cannot be
available, since it would collapse under its own weight unless made of some more or
less ‘ideal’ matter unkmown to physicists, It is better not to postulate such magical
" substances, Without any material sphere, it becomes difficult o guarantee that
free measuring rods, whether straight or appropristely curved, would be unaffected
by tidal forces and by differential accelerations, and would all be stationary at the
‘same instant (df = 0). We shall therefore employ a different method.

Among the standard ways of determining the solar parallax, one of the best
direet ones is to infer the radius of the earth’s orbit, in kilometres, from the annual
variastions in the apparent radial velocities of stars reasonably near the ecliptie.
There is no evident reason (apart from the obvious technical difficulties) why the
accuracy should not be pushed to any limits desired, and the method does not require
calibration of a long terrestrial baseline, nor does it involve any question of simul-
taneity as between distant stations. We consider therefore a space-ship moving in
a circular orbit of radivs r {in the sense of our isotropic co-ordinate system), and
we require the crew to meagure the apparent radial velocity of a star in the ecliptic,
and to discover the value of » from the annual variation.

We may suppose the crew to be in possession of any instrument we please, for
measuring wavelengths; different ones cannot give different results without enabling
the crew to determine their absolute ‘motion through the ether’. The instrument
we pelect is an interferometer of the Fabry—Perot type, i.e. two parallel plates of
which the first is half reflecting and the second fully reflecting. We suppose the
plate separation to be continuously variable down to an effective value {inclnding
whatever phase changes are produced)} of zero; this zero separation is of course
readily identified in white light. If the interferometer iz set up in the laboratory,
with any monochromatic light source also stationary in the laboratory, and if ¥
fringes are counted as the separation is increased from zero to some positively
determined value I’ (in ‘laboratory”’ units}), then the crew will consider that at any
given instant, when the separstion is held constant at I, there are between the two
mirrors a total of N half-waves going in each direction; they will calenlate the wave-
length as A" = 2I'(N, and they will do this whether they are using a laboratory source
or some external one having s relative radial velocity.

Using alahoratory source of a standard wavelength. they can in this way calibrate
the length I, but for our purposes this is not in fact necessary. We suppose them to
use & sufficiently narrow emission line in the light from a non-variable star exactly
in their ‘ecliptic’. Let the total fringe-count be XN when the ship is moving directly
towards the star, and A} when it is moving directly away, half a ‘year’ later. (It
is not, of eourse, necessary to run the mirror separation down to zero and up again
each time; it can be kept constant at I’ throughout, and the slow change in N
counted directly, as it occurs.) An observer stationary in our Euclidean co-ordinate
system cannot disagree with the crew as to the absolute count of fringes from zero
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separation to the final one, or about the change in the count {(from maximum to
minimum} in the half period; he will, however, disagree about the interpretation.
and in particular will not consider that at any given instant the numbers of ‘direct’
and ‘reflected’ waves contained between the two mirrors are equal.

If A, is this observer’s value for the wavelength of the starlight, at the distance r
from the origin, and if is his value for the separation I’, he will consider that at any
given instant there are IfA, ‘direct’ waves between the two mirrors; the reflected
waves, when the ship is moving towards the star, will be shortened in the ratio
(¢, —v){c +v) by refiexion at the moving mirror, and there are therefore

le,+v)[A(c, =)
of them between the mirrors at this stage. Accordingly
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Similarly, half a ‘year’ later A = -7
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This somewhat elementary discussion has been given in detail beeause it is
essential to avoid all approximations, such as might perhaps be latent in the
equation AAfA = --Av[v It will be noted that the result, down to this point, is
independent of the co-ordinate system in use, and holds also for an anisotropic
refractive index provided ¢, is understood as the tangential velocity of light. The
value of I'/l has cancelled out, as has A, (which depends on the star’s own radial
velocity as well as the possibly unknown atomie transition involved), and no other
relativistic term has yet appeared. A’ is the immediately observable (A + A}).

If r is the period of revolution, in units of ‘true’ time, we have ¢ = 27/r. The
space-ship’s clocks are going slow, both on account of (17} a.nd on account of its
velocity; they register the shorter time 7", where

Y ?,-2)% 2
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The value of gﬂr can be obtained in terms of AAA bv using (61) sinee v in that
equation is the circular velocity, we have
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The above analysis could in principle be extended to deal with an ‘elliptical’
orbit. It cannot, however, be used in the case of the earth itself. ¥or in the classical
Newtonian theory, the reduction from the centre of the sun to the barycentre of
the earth-sun system involves corrections of approximately 3 x 10-8, while m/r at
the earth’s distance is about 10-8; even for Mercury, where the barycentre correction
is considerably smaller and m/r is rather larger, the relativity effect is still the smaller
of the two. The earth cannot, therefore, be regarded simply as & ‘test particle’; it
1s essential to develop a proper theory of the two-body problem at least. In peneral
relativity, this question was broached in 1937 (Einstein, Infeld & Hoffmann 1¢37;
also Robertson 1937) but it is still being developed; whether any help will emerge
from the present treatment cannot, of course, be prophesied, but it is at least con-
ceivable that some additional workers may now be attracted to this field.

I should like to express my grateful thanks to Professor M. H. L. Pryce, F.R.S.,
and to Professor J. L. Synge, F.R.8., for some very helpful comments; in particular,
Professor Pryoce supplied the Lagrangian which I have used. His derivation wasa
relativistic one, not the one I have had to give, and neither he nor Professor Synge
should arbitrarily be assumed to approve of the use I have made of their help.
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