
Excerpt from AIP CP 969, 1055 (2008) 1

Gravitational Waves in Euclidean Space 

Giorgio Fontana 

University of Trento, 38100 POVO (TN), Italy.  
 39-0461 883906, fax: 39-0461 882093, giorgio.fontana@unitn.it  

 

Abstract.  Weak gravitational waves are described in Euclidean Space. Linear and non linear wave equations are 
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INTRODUCTION 

The Theory of Relativity is formally four dimensional and it might seem reasonable that waves related to a four 
dimensional environment should propagate in four dimensions. The usual analysis is mainly focused on treating 
gravitational waves like electromagnetic waves for what is related to the domain of propagation. The possibility that 
gravitational waves might travel in four dimensions, i.e. that they might travel also through proper time, is here 
explored theoretically, including some expected consequences.    

The first step for a deeper understanding of the problem is to change from Lorentzian space-time coordinates to 
Euclidean coordinates (Montanus, 2001; Gersten, 2003). With the coordinate transformation, the universe is 
described with four space-like coordinates and an infinite number of “local” time variables. In Euclidean relativity 
time t goes back to its old status of being a running variable, not an explorable dimension, just like it once was in 
pre-relativistic physics, and every “object” has its own time variable, which sequentializes its activity and makes 
distinction among past, present and future for that specific object.  The equivalent Euclidean form of the Theory of 
Relativity describes the behavior of light and near light-speed phenomena with the same accuracy as the usual 
Theory of Relativity. 

 Euclidean Relativity can be easily extended to a form of “brane” world multiverse theory that does not require more 
than the four dimensions of the so called “Euclidean Space” (Fontana, Murad and Baker, 2007), or of other extended 
space-time concepts (Froning, 2004; Meholic, 2004). The Euclidean Space hosts a parallel space-times structure on 
each of its four dimensions (Fontana, 2005), this structure is compatible with the existence of “non visible” matter 
and predicts it in the amount measured through gravitational effects by just assuming the other three space-time 
structures are similar to our own (Fontana, 2005).  
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FIGURE 1.  Parallel space-times (parallel worlds) along τ; ortogonal space-times (dark universes) along x, y, z. 

 

Let’s say that the structure of flat space-time is the following Minkowski metric: 

                    ( ) ( ) ( ) ( ) ( ) ,222222 dzdydxdtcd −−−=τ             (1) 

which introduces the speed of light c and its properties in the tri-dimensional space and time.  
Rearranging we have: 

   ( ) ( ) ( ) ( ) ( ) .222222 dzdydxddtc +++= τ             (2) 

In Equation (2) τ, x, y and z are the coordinates of the Euclidean Space and t is the variable used to evaluate velocity 
and acceleration. Time t is an integral local function of changes of the four space coordinates. Motion in the 
Euclidean Space is the origin of time t, and the origin of our view of reality. Equation (2) in not a metric in the usual 
relativistic interpretation, it only indicates a property of observable particles as deduced from experiments in a 
space-time. Particles that obey Lorentz invariance, also obey: 
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obtained from Equation (2) by dividing by (dt)2; those particles belong to a space-time. The speed c is an invariant. 
Returning to Equation (1), it can be rewritten as: 

         ( ) ,2 dxdxd νµ
µνητ =               (4) 

ηµν is the Minkowski metric in matrix form (Weinberg, 1972): 
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A generic low amplitude gravitational wave, fully consistent with Einstein field equations is described by a 
perturbation of the Minkowski metric, i.e. hµν <<1: 

      ( ) ( ) dxdxhdxdxgd νµ
µνµν

νµ
µν ητ +==2 .           (6) 

For a plane gravitational wave traveling along the z axis at the speed of light in flat space-time it is found that only 
the  components of the metric along x and y may change because of the passage of the gravitational wave. With a 
and b solutions of a generic wave equation, the symmetric tensor for the polarizations + and × is: 
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GRAVITATIONAL WAVES IN THE EUCLIDEAN SPACE 
 

The conversion of the weak gravitational wave metric to Euclidean form is performed on the above mentioned 
example in order to gain some information on the behavior of gravitational waves in the Euclidean Space. A 
generalization by symmetrization will follow and additional examples are reserved for future papers. 

Writing Equation (6) and Equation (7), with x0..x3 to be t, x, y, z respectively and by keeping only the polarization 
aligned with x and y we have: 

        ( ) ( ) ( )( ) ( )( ) ( ) .11 222222 dzdyadxadtcd −+−−−=τ             (8) 

In Euclidean form it is: 

         ( ) ( ) ( )( ) ( )( ) ( ) .11 222222 dzdyadxaddtc +++−+= τ                 (9) 

The simplest method to describe the interaction between a weak gravitational wave and particles traveling in the 
Euclidean Space is by writing the speed invariant of Equation (3) with the gravitational wave.  

The Euclidean Space four-speed invariant including a plane gravitational wave with + polarization traveling along z 
is therefore: 
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We easily recognize that photons traveling at the speed of light along z with dτ/dt = 0 have their trajectory deflected 
along x and y.  For masses in our space-time we have dτ/dt ≈ c and dz/dt ≈ 0 and their four-speed similarly 
modulated. Both must have non-zero initial four-speed along x and y in the Euclidean Space in order to have it 
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modulated by the gravitational wave, thus posing a question of detectability in some specific states of motion in the 
Euclidean Space.  For the wave interaction described by Equation (10), a mechanical constraint regarding dx/dt or 
dy/dt may induce changes in the remaining two components of the four-speed.  Future work will analyze the details 
of detectors of gravitational waves in the Euclidean Space framework.  

According to Fontana (2005) four orthogonal space-times coexist in every infinitesimal volume of Euclidean Space 
and the role of photons and matter can be interchanged in Equation (10) if a different orthogonal space-time is 
considered. To be consistent with the speed invariance and the symmetry principles that led to the Euclidean Space 
concept (Modanese and Fontana, 2004; Fontana, 2005; Fontana, Murad and Baker, 2007), gravitational waves are 
allowed to travel with components along the four coordinates of the Euclidean Space.  Each component involves 
two coordinates and affects matter that belongs to space-times traveling along both of the remaining two, including 
their respective photons.  

Both in General Relativity and  Euclidean Relativity, matter and waves “fill” the respective four dimensional spaces 
and are therein described mathematically in their whole cosmological history.  Euclidean Relativity advantageously 
decouples the “content” of “space”, which is now a four dimensional pure space/Euclidean Space or “memory 
space”, from the “editing processes” represented by the parallel brane/space-times passages or sweeps, driven by 
quantum rules in conjunction with their speed invariant (Fontana, 2006). 

The Hyperspherical symmetry (Almeida, 2004) has been invoked to model a uniformly expanding Universe, while 
the observed accelerating expansion will be discussed later in this paper.  

 

PROPAGATION OF GRAVITATIONAL WAVES 

Gravitation can be easily introduced in the Euclidean theory by resorting to the analogy to optical propagation in a 
three-space and introducing a gravitational refractive index of the Euclidean Space named n (Almeida, 2001): 

       ( ) ( ) ( ) ( ) ( )[ ] ,0   , 2222222 ≠+++= ndzdydxdndtc τ           (11) 

after switching to spherical coordinates with dϕ=0 and dθ=0, writing ds2=n(dτ2) and substituting:  

      ,211






 −=

r
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n             (12) 

we find the Schwarzschild’s metric of General Relativity (Almeida, 2001), with G the gravitational constant, m is 
mass and r distance. Therefore there exist a formal link between General Relativity and the Theory of Gravity for 
the Euclidean Space that is called Four Dimensional Optics (4DO). 

For the wave described by Equation (11), with a<<1 we express Equation (11) as: 

        ( ) ( ) ( ) ( ) ( ) , 2222222222 dzndyndxndndtc zyx +++= ττ          (13) 

Comparing Equation (10) with Equation (13), it is obvious that the weak gravitational wave is a wave of refractive 
index of the Euclidean Space, which propagates at the speed of light in four dimensions. More generally, assuming 
isotropic propagation, a generic wave equation for weak waves traveling at speed c can be written: 
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Equation (14) is characterized by time t defined as an evolution variable as in the equations of electrodynamics and 
by having four space dimensions.  
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The linear wave Equation (14) can be integrated with results that will have integration constants. In fact in the flat 
background, the refractive index is unitary; this value must be added to the solutions of Equation (14).  

If the background value can be ignored in the derivatives, it must be included in the expression of speed.  The 
nonlinear wave equation that includes the effect of the refractive index on speed is therefore:  
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21
,           (15) 

whose nonlinear behavior expresses the non-linearity of gravitational waves (Christodoulou, 1991). The background 
value of n must be added to the solutions of Equation (15).  

Equation (14) has the usual wave solutions for any value of n, instead Equation (15) has the usual wave solutions if 
n2 <<1.  

The solutions for weak waves in a unitary background may come from separations of variables in spherical 
(hyperspherical) coordinates. Writing the solutions of Equation (14) in the form n(r,t)= T(t) R(r) , the individual 
equations are: 

     0)1( 2
2

2
=+−+ rRk

dr
dRi

dr
Rdr ;  02

2

2
=+ T

dt
Td ω ,         (16) 

 

where i is the space dimensionality of the problem, k has units of 1/distance and ω has units of 1/time. With i=4, 
they are waves in four dimensions. Please note that with odd dimensionality (i= 1, 3, 5, …) the traveling wave 
solutions have speed c; instead for even dimensionality the traveling wave solutions have a spread of speeds from 
zero to a maximum (Brown, 2007). This last result applies to gravitational waves in the Euclidean Space.  

Qualitatively, according to Equation (15), if a beam of gravitational waves is more intense at the center respect to 
the periphery, then the central part of the beam travels at lower four-speed, leading to self-focusing, in agreement 
with the classical treatment of the problem (Corkill and Stewart, 1983; Ferrari,1988).  

The unitary background refractive index of Equation (15) needs some explanation as it could be attributed to a 
background gravitational wave that cosmologically supports our space-time. In fact removing the background the 
non-linear wave equation is: 
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Starting from the wave equation in i space dimensions (i=4 for the Euclidean Space) and adopting again n(r,t)= T(t) 
R(r): 
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we separate the variables: 
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rewriting, the left hand equation is: 

           0 )1( 3
2

2
=−−+ Rr

dr
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Rdr κ ,           (20) 

while the right hand equation gives: 

              T
c

dt
Td  2

2

2 κ= ,            (21) 

that is a case of the Emden-Fowler (EF) nonlinear ordinary differential equation with A=κ c2 (Sachdev, 1991). 
Equation (21) has no known explicit solution in the form T(t)=f(t), instead it is possible to write:  

 

            ( )∫ ++= − CdTCTAt 12
2/1ln2 .           (22) 

 

With κ≠0, Equation (21) can be integrated numerically with the approximate result: T(t)≈ C1+C2tα, with C1 and C2  
real constants and α slightly larger than 1 (α≈1.03). The solutions with both C1≠0 and C2=0 are not acceptable, 
because T(t)=constant does not satisfy Equation (21). With numerical integration, the slope and its sign depend on 
the initial conditions of the integrators, the equation is obviously singular for T=0. Other cases of the EF equation, 
which are numerically treatable like this one, do have explicit analytical solutions; those have been used for testing 
the numerical integrator and to find the class of functions for fitting the parameters of the approximate solution. 
With κ=0 the solution is T(t)= C1+C2t.  As κ has units of 1/distance2, the physical significance of such a situation 
has to be investigated, but we observe that with κ=0, the solution T(t)=constant is consistent with a stationary 
Euclidean Space. With negative κ the spatial term of Equation (16) is a damped oscillation, the same we have for 
Equation (20).  

The evolution of space-times within the cosmological non-linear gravitational wave can be interpreted by saying that 
the large scale sweeping of space-times through the Euclidean Space may become slower and slower as long as time 
t passes, on the other hand, in spite of the increasing temporal component of n, the oscillating and decreasing spatial 
component of n combined with the motion of a specific space-time may also result in a nearly constant n for the 
local background, during some evolution stage of the specific space-time. In addition the background value of the 
refractive index n(r,t)= T(t) R(r) depends on r through Equation (20), therefore we may have regions of the 
Euclidean Space in which the propagation speed of all particles is different from c, and the existence of Euclidean 
Space “highways” is not excluded, especially if the complete solution to the spatial equation including angles is 
considered. The discovery of those regions may be of great importance for interstellar travel. In the Euclidean 
Space, n can oscillate from positive to negative values. The effect of the sign change on space-times has to be 
investigated.   As pointed out by  Murad (2007), with κ=0 the  solution of the spatial equation is simply  R(r)=(1-
i)ln(r)+C, therefore n(r,t)= (C1+C2t)[(1-i)ln(r)+C3]; again this particular solution indicates that the speed of space-
times in the Euclidean Space changes because of evolution in time and expansion in space.  

The existence of a cosmological primordial gravitational wave may affect, particularly with its space component 
R(r), the expansion speed of space-times as shown by the following picture, thus improving Almeida’s geometrical 
model of the expansion of the universe: 
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FIGURE 2.  Expansion of our space-time with variable speed. 

 

CONCLUSION 

The Euclidean Space approach to gravitational waves has allowed an exact solution to the hyperspherical non linear 
gravitational wave. It may also offer some interesting inputs to cosmology as soon as it is recognized that the 
Euclidean Space itself might be a special gravitational wave. Non-baryonic dark matter is here associated to matter 
belonging to orthogonal universes and this model can predict it in the observed amount. In an attempt to complete 
the geometric approach to the modelization of the expansion of the universe, the present analysis suggests that a 
primordial/cosmological non linear gravitational wave may modulate the expansion speed, therefore causing the 
observed acceleration and deceleration of cosmic expansion.  
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