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Abstract

Any formulation of the theory of relativity specifies implicitly or explicitly the
exactness or inexactness of the temporal and spatial differentials that occur. The
Minkowski formulation implicitly assumes the exactrness of coordinate (common)
time and the inexactness of proper time. In this paper we examine several other
possibilities. The assumption of the exactness of proper time and inexactness of
common time leads to a space—proper time (SPT) representation of events that
(a) yields the customary formal results of the theory including the differential
aging prediction of the 'twin paradox,’ (b) allows an analog of Fermat's principle
to describe both particles and light,-and (c) leads to a many—proper time formula-
tion of the relativistic many-body problem essentially equivalent to the Minkowski
space formulation., Analogies between this SPT geometry and the geometric ap-
proach to thermodynamics, especially as formulated by Carathéodory, suggest the
v function of relativity is an integrating factor with physical meaning for the many-~
body problem and also provides insight into the concept of virtual photons.
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A Space —Proper Time Formulation

of Relativistic Geometry

1. INTRODUCTION

The theory of special relativity has almost from its beginning been character-
ized by Minkowski space-time geometry, This consgists of a pssudo-Euclidean
metric constructed from the spatial coordinates and the so-~called common or co-
ordinate time, A second type of time, the proper time, has been introduced which
coincides with coordinate tiine for a body at rest in the frame of reference, The
proper time is important for it both expresser. ihe timekeeping properties of a
moving body and plays a large role in the formulation of 4-vectors. Yet to the best
of our knowledge, no one has constructed a space—proper time geometry,

In writing this paper we wish to consider a space—~ proper time geom 2ty as an
alternative relativistic geometry. There are advantages and disadvantages in our
approach, both of which we hope to make evident, We feel {and obviously this is
our prejudice) that this approach illuminates the meaning of time, A definite dis~
advantage is the appearance of solipsistic space—proper time diagrams, implying
a 'private’ world for each particle. A consequence is that such diagrams can de-
scribe events with timelike separatiun only. Recognizing the novelty and strange-
ness of this approach, we ask the reader to suspend judgment until he has read the
paper and considered the potentialities of this geometry.

(Received for publication 10 November 1969)
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The starting point of our investigation is what Costa de Beauregard har called
the first law of time. In his book La Notion de Temps (1963) he has pointed out a
remarkable parallel between the first law of thermodynamics and the expression
for the world line element ds. The first law asserts the equivalence of heat Q and
work W,

du = dQ - dW, (1

where U is the internal energy. The expression for the world line element asserts
the equivalence of time and space,

2_ 2.2 (2)

where dr is the three-dimensional spatial increment, ¢ the velocity of light, and
t coordinate time defined by the Einstein clock-synchronization convention. This
is also the defining equation of the proper time dr, for which we write

ds2 = -czd12. (3)

Analogies are admittedly treacherous and rarely if ever allow a one-to-one
corresponde ‘e, The first law of thermodynamics is a linear relation, whereas
the first law of time, Eq. (2), is a quadratic one. The internal energy is a state
function of a thermodynamic system and is an exact differential, whereas both the
heat and work are path-dependent and are therefore inexact differentials. The first
law of thermodynamics thus expresses an exact differential as the difference be-
tween two inexact differentials,

Combining Pqs, (2) and (3), we write the proper time as

czd-r2 = o?gt? - drz. (4)

The path element dr is by ite very nature path-dependent; this is of course a tau-
tology. The similarity between Eqs, (1) and (2) pointed out by Costa de Beauregard
has suggested a need for reexamining the exactness of the differentials appearing
in Eq. {2), To pursue the analogy, we wish to consider the proper time as an exact
differentiel while treating the coordinate time as inexact or path-dependent in an
appropriate space. This approach draws heavily upon classical thermodynamics,
especially as formulated by Carathéodory (1909, 1925),
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2. THE LOGICAL BASIS OF SPACE-PROPER TIME GEOMETRY

The Lorentz ti-ansformations have the property of leaving the proper time ele-
ment dr of Eq, (4) invariant, Although the path element dr is inexact, it may be
written as the sum of the squares of three exact differentials, the usual cartesian
coordinates,

!
dr = (dx® + dy% + 22272, (5)
This enables us to rewrite Eq. (4) as
2 d'rz = 2at? - (dx2 + dy2 + dzz). {(6)

This equation lacks physical content until we specify the nature of the time differ-
entials. There are four alternative physical postulates:

(A) dt exact, dr inexact.
(B) dr exact, dt inexact.
(C) dr and dt both exact.
{D) dr and dt both inexact.

Minkowski tacitly assumed hypothesis (A) and his results are well known (Lorentz
et al, 1958), Hypotheses (C) and (D) will not be considered in this paper, although
we shall briefly examine the physical implications of (C) in Sec. 4, We ask the
reader to entertain hypothesis (B) as a logical possibility, We hope to show (1) that
the results are consistent with the principle of relativity, (2) that the principle of
logical economy—Occam's razor—may be invoked in favor of (B),and (3) that obser-
vations on macroscopic systems are unlikely to provide a crucial test for distin-
guishing between (A) and (B).

Equation (6) may be rewritten as

cZat? = cFar?+ ax? + dy2 + d2?, (6a)

If we restrict ourselves to timelike intervals (d'r2 > 0) and assume hypothesis (B),
d1:2 is then represented by a positive definite sum of squared exact differentials.
The quantity cdt may then be interpreted as an arc length in a Euclidean 4-space,
just as dr, whose square is a positive definite sum of three squared exact differen-
tials [Eq, {5)}, is an arc length in a Euclidean 3-space. It seems to be generally
true, though seldom noted, that the natural quantities to use as coordinates in

R e SRR e
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geometric representations of physical processes are those whose differentials are
exact, For example, one does not in‘egrate dr directly but rather with respect to
ax, dy, and dz. We thus find it reasonable to use x,y,z, and cr as the coordinates of
the Euclidean 4-space in which cdt is an arc length, This 4-space will be designa-
ted as 'space—proper time' (SPT;. In the Minkowski representations, which assume
postalate (A), the coordinates are taken to be x,y,z and either ict or ct. For con-
venience and brevity we shall refer to the Minkowski space-time representations

as MST,

Before going any further we must admit that SPT necessarily lacks the univer-
sal « >presentation capabilities of MST, Since 7 is the proper time of an individual
particle, SPT is essentialiy solipsistic. Each SPT must oe thought of as a 'private
space' belonging to one and only one particle, namely, the one with respect to which
the coordinate cr is defined. This is not so great a disadvantage as would at first
cppear. If each particle has its own timekeeping properties unique to the geometry
describing the particle, one finds nonsimultaneity of events in different systems a
quite natural occurrence. In SPT it is no longer appropriate to call the time de-
fined by Einstein's synchronization convention 'coordinate time' so we shall refer
to it as common time or, more explicitlv, t time, an expression that has the ad-
vantage of being free of any connotations, Its increment cAt will play, as noted, the
role of arc length along the SPT world line,

3. THE SPT DIAGRAM AND LORENTZ TRANSFORMATIONS

To make the preceding ideas more concrete let us develop elementary kine-
matics in SPT, Consider a particle moving with constant velocity along the x axis
of an inertial reference frame K, Since the velocity has an x component only, we
may suppress the y and z coordinates. Hence, following the ideas of Sec, 2, we use
¢7 and x as the coordinates and draw the two~dimensional SPT diagram shown in
Figure 1, Since SPT is a flat space with a positive definite metric, the results of
Lorentz transformations (for parallel motions representable in the ¢7,x plane)
become theorems of Euclidean plane geometry. Equation (6a) is simply the
Pythagorean theorem for triangle OAB in Figure 1. The points O and A represent
two events in the history of the particle moving with velocity v parallel to the
x axis, measured in K, The two events are separated by an interval cdt of common
time, measured in K. By measurement in K we understand space and common time
measurements with Einstein-synchronized clocks and meter sticks at rest in K,

Consider a second inertial frame K' (Figure 2) moving with velocity u with
respect to K, with the x and x' axes coincident. The relationship between v, v', and
u is derived from SPT principles in Appendix A, The two events represented by O
and A in frame K (Figure 1) are represented by O' and A' in frame K' (Figure 2),
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If we take K and K' as being coincident when the first event occurs and identify
O and O' as the origins of K and K', superposition of Figures 1 and 2 shows that A
F , and A' lie on the same line of constant v. The Lorentz transformations, being those é
)

that leave dr invariant, are thus transformations of shear on lines (more generally, i
hyperplanes) of constant 7, It is worth noting that the Galilean transformations of
Newtonian physics are also transformations of shear on hyperplanes of constant t,

; where t in classical physics is an absolute time parameter, Since classical mechan-
ics contains no universal constant ¢, however, the 'space—absolute time' (SAT) ir:
which such transformations occur is dimensionally inhomogeneous and therefore
not directly comparable to the homogeneous 4-spaces of relativity theory, The
absence of a universal constant makes it imposgsible to assign a natural dimension




to the arc length of the classical world line but does not vreclude formation of
mechanical variational principles in SAT.

Returning to Figures 1 and 2 we note tLat the quantity 7, plotted as o7 on the
ordinate axis, is in all cases the proper time of the particular garticle represented.
{An adstract "proper time" independent of the particle has no physical meaning.
The proper time 7 is the time showr by a clock co-moving with the particie. in
gZeneral, this clock is not permanently at vest in any inertial! systemn. This is the
origin of the solipsistic sature of SPT.] The SPT world line {OA in Figure 1) of
any mscroscopic particle always exists in 2 fixed relationship to its SPT axes,
since at every ‘age’ the particle occupies a definite spatial iocation. Thus, 2 one-
to-one cor. sspondence exisis between a sequence of contigvous repressntation
points in SPT and the dynamic kisiory of the particle. Further pr-of of the physi-
cal ‘existence’ of space—proper time is not needed nor can it be given. We canmot
ot worl< lines for more than one particle in one SPT diz 'ram. Xor can we con-
coive of such a diagram in the absence of any particle. In this sense SPT is con-
crete.

The shear-related representations of SPT georxetrically express the principle
of relativity. Observers in diffevent inertial frames who plot the first of tao events
associated with a given particle at a common SPT origin will plot t.» second a2
wvarious loci on the same constant ¥ hyperplane. Each locus refers 1o a different
Lerentz frame, but all loci are comnected through shear transformations. Thus,
the SPT representation of events, like that of AMST, is not mnique or absolute but is
physically indeterminate withir 2 Lorentz transformation in conformity with the
relativity principle. The differcoce is that in MST the world lines ressain invariant
while the axes move under a Lorentz transformation {(rotate if ict is the temporal
cvordinate, scissor tngether if ct is). In SPT the axes remain orthogonal for 1!
frames while the world line moves by shearing. Classical SAT hus leatures in
common with both., It resembles SPT in the nature of its transformations but re-
sembles LIST ir possessing the capability of describing simultaneousiy any sumber
of particles. The invariance of the SPT axes under Lorentz transformat’ong pre-
vents portrayal of relative motion betwzen two inertial irames. The relative
motion between the frames must be inferred from the difference in slopes of the
two world lines plotted in the two appropriate SPT diagrams (see Figures 1 and 2).

It must be noted that SPT camnot describe events of spacelike separation
simply—again owing to the solipsistic nature of the representation. It can repre-
sent simply only events of time'ike separation on the world line of a single particle.
Spacelike separations must of n2cessity refer to twe or more particles. A striking
feature of SPT diagrems is thus the avse..: of the 'elsevhere’ beyond the light cone
in MST, Superficially, the situation resembles the one that might obtain were the
forward and backward light cones associated with a particular event in MST squeezed
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together to a single hyperplane (27 = 0). This sgueeziag together would exc lnde
the ‘elsewhere,” elimzate the distincics betwoen advanced and retarded inter-
actions, and exagpersie the interior por_ions of the light cones (pasi and futare).

Despite the apparestly sosphysical seture of SPT, we verify in Appendic A tha
SPT yields the familiar formal resuits of clemeniary reistivity theory. This is mot?
surprising since the SPT resvesemtatiors satisfies Finstein’s origing]l postulates of
relativity and the constaney of Hzic velocity.

L THE NEVVCTNESS 6F & AND CAR\TIFEDERY 5 PRNNLIPLE

A cursory look 21 Sec. 3 and Appendix & might sugpest that SPT is merely 2
differ=mt geometric representation of physical Iacts Jong Zameiliar ircen MET amaly-
siz, We feel that examinstion of the SPT deseription of the propagtica of Hght
clarifies the physical meaniag of several ideas waderiying relativity. Also, the
thermodvmamic aralogy has led, we belizve, to 3 phwsazal isterpretation of the ¥
factor. This interpretsion may prove 2eipful in formmizting the relatiristic mamy-
bady problese.

Consider the propagation of light. e SPT as im ST, the path of 2 ghot<= is
specified by Ar = 0. For photon motion is the x Jirection, differeatials ave inte-
grated to give finite increments Ax = cAt and fram Eg. (6) we have

In SPT_ ticrefiore, 2 thotos during its ensire iife is coafined 10 2 Iyperplase of
constzzt . K one-way progesition, which i classica: terres ma~ be pictered 58
-CerrTinz op 20 expavEine spreric:] Hgly shell, is mmambigeocaly descred by in-
crezsie © vilaes of the perzmeter t. As SooR aF we emcomter aay deviation frome
oe-x T Etheg howerer—cs iz the ce3e - reflect:ax by 2 mmirror —a 2ew oumsad-
erslion enters.

Qi SPT 320205515 has thus far beer based solelr on ae asscaptice abost &,
namely, %t # is za exact differential. Ve tavre not 235 yet rmaoe explicit wee of the
ofner half of postulate (B), tc wit, that X is inexact. Hence, the deveiopment to this
oot i€ compztible with barth postalates {(B) ax< (Ch.

Beicre examiaing postulztes (B) zn2 (C) le2 us first rew:ite Eq. (§):

2.0 1 -ar w32, n

»
-

I

or

droc g -x'zvcz,l 2,
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where v is the 3-elocity in the frame considered. H we dofine y as (1 -viech l'z.
we nay write

& = &iy. Ta)

Siace v eguals ¢ for 2 photon, ¥ is flte asd dv is 20, regardiess of tie value or
exactagss of &. Were postulate {C) correct ~both & amd & exact —~{he photor coald
propagate cutward from the crigie c: 2= expading light shell, severse its direction
24 any momext, >0d retlars o6 3 comtractiog g shell, remanisg ale ays on the
yperpiame AT - 0 in SPT. Oz the cxtward jourwey its progress would be Tewre-
sented in 3 wo-dimensioual diagrae= e Figure | by 2 leagthening vector of mag-
aitade ¢/ paallel 1o the x axis. s\!&cm—amnil.‘ne.bl‘aﬂerm~
piacson SPT worid Hoe scald Miaie o maxiroce lemgth 20d thes begls 1> shorten.
The resultiant vecior sendd eventaaully shoeten o zero lemgth, Snplying the pimton’s
reture J0 its sosrce > *he same * e 22 Us vireal excissics. This is of orwree
the meaning of exacteess of A the photon oowgletes - romd trip sithst Ixy
chamgr e t, shick irspiies ¢ - ¢. Brezking She jourmey isto mamy short 2-(iee
hw%“:&a&mm%hmnm
mm«mmm&m:&r The exictoess of &, he
wmicrostepic reversibility € & tiwe, 30f the Tectoria wdfitiviey of 1-tizxe 'mere-
ments % SPT are tins three ogmvalert x2ys o descriding partich: bebavive oo -
Sceming % pwstyizse 0.

Cax e rscribe pitysica’ rezigy W smek bebovics” Nething it o Soerivece
% comgdesed oo caservibiie zovoesses orrresponis v . B o guoatun vistogi
PrICLSICS “mscrived x timve - rrversisle 3T egritaas af ceIxrTimy EVr K PR -
"Iy weeciEiry e SEreEDeer, The SISIeR reTLLNS I 3 PRI gure sSabe s f u$
Terefe Swermoinwaaricu i isdytzt. iy, Tee csadition of marrosorraca ™ rever-
sibiz S isemtropic Sekanioe oo T tiwme is puet, and pratatee (C) is predobic fie
px Fcslly reievimt coe. Examcies of sare 3 process sre Soawd i vom Wetz s cuer’s
(1 ¥38) xvize g ;iactore Seewied of tae macierr fielld smvd ix The guatoer electrodrmameic
descrigtiva € e Comboezh fiedd. Sutk 1iweces are rrsambd; descrivet br pstu-
e ). For G rest of fis pager ve siull restriet ourseives W cbezevaibie
macTreecopic processes, Sor xhick v rewssest st late (B,

mwawsdawiesm:utmmgchq.w
by cesmpewrs £ .re ‘et ix ST, are scalar sifehve. tHeace, the irveversbiiny
of t e ix Secdicit ix The very mature of the S¢T description. Lot us retare W Be
reflection «f i phce by = mirror. Sespose that st time &4, * EjAy;] ater emission
the phvta) eacxaaters . mirror aad is reflected back Yoward igs susree. is e re-
flective event el 2 pn sicalzy irreversivle process” One migsz thick mot, because
the phrot 2;pesrs 2o remais ir 3 pgse-comecied usre st describalle br t-time
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reversible equations, Moreover, no ‘observation' need have been made on the sys-
tem in the strict Copenhagen sense. Nevertheless, something irreversible has taken

- place at the mirror as is shown by the occurrence of radiation reaction. After

mirror recoil, propagation of the photon can no longer be virtual —the photon has

'lost the option of changine its mind.' Indeed, it can no longer be the same photon

since it must have o slichtly iower frequency. This second photon, like the first,
rmust be described by a steadily increasing At. The description of such two-way,
propagation is easy in MST but requires caution and is susceptible to ready misin-
terpretation in SPT.

Since SPT diagrams cre different for different particles, the two photons cannct
be represented in one diasram,. Each photon is represented in its own SPT on its
own hvperplane of constant 7, Otherwise, AT = 0 would imply that after reflection

the photon returns to the observer zt the same proper time it was emitted. Actually

this would L2 the same :s attempting to crowd three different proper times—those
of the two photons and that of the observer—-—into one SPT diagram. To treat two or
more /p:wticlcs, separate SPT diagrams must be introduced. The problem of col-
leztive description is then one of correlating the single particle SPTs.

If we assume postulate (B), Eq. (7a) becomes highly suggestive. It is at this
point we wish to introduce our 'thermodynamic' argument. Appendix B contains a
brief summary of the Carathéodory formalism, By dividing the inexact differential
dt by y we convert it into an exact differential dr. Therefore ¥ is an integrating
factor of «dt in SPT, Now we know that a Pfaffian differential expression with two
variables alwavs possesces an integrating factor. The Pfaffian form for t time
would then be dt = 0. In thermodynamices the inexact differential of heat is dQ.

The condition for adiabaticity is that dQ equal zero. We conclude that the virtual
photon plays the same role in our SPT geometry as adiabaticity does in thermody-
namics. Both concepts —quantum virtual processes and adiabatic processes —also
share the quality of being idealized system 'motions’ that are strictly unobservable.
It should, however, be noted that adiabaticity, although a necessary condition for
thermodynamic reversible behavior, is not sufficient in itself. An adiabatic process
is not necessarily isentropic, as witness a Joule expansion. Consequently, the
entropy differential dS is not always equal to dQ/T, and so we write the inequality:

ds 2dQ/T. «(8)

In this sense we do not have an exact correspondence between zero dt and zero dQ, -
for the virtual photon must be reversible. Moreover, Eq. (7a) is an equality, not an
inequality, and we can always integrate it for real photons and material particles
as well as for virtual photons. The SPT formalism is thus even simpler than that

of thermodynamics.

- Best Available Copy
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From the SPT analysis we have arrived at the following ideas, which are
admittedly highly speculative but nonetheless suggestive. In thermcdynamics the
integrating factor is more than a formal mathematical device. The temperature
has profound physical significance as a statistical measure of the energy of a sys-
~tem. It is used in the Clausius formulation of the second law: heat cannot flow .
from a body at a lower temperature to one at a higher temperature without mechani-
cal work having been done. We therefore ask the more general question: If an inte-
grating factor appears in the analysis of a physical problem, does it have physical
significance? Since we interpret the ¥ function as an integrating factor, we seek
such an interpretation. We should note here that whether we accept postulate (A)
and MST, or accept postulate (B) and SPT, Eq. (7a) expresses a relation betwecn
an exact and an inexact differential. Any physical interpretation of ¥ is therefore
not restricted to the SPT formalism.

In attempting to ascribe a physical meaning to the y function we look for clues
in the meaning of temperature. Temperature is a statistical measure of the energy
of a system —to speak of the temperature of one electron is meaningless, The y
function can be written for a single particle and so is not statistical. Involving
velocity éé it does, ¥ is therefore related to energy, and so is characteristic of the
state of a particle. For any given particle, ¥ has a minimum value of unity (particle
stationary in the frame) and a maximum value of infinity for a photon. The recipro-
cal of ¥ therefore lies in the range between zero and unity. To attempt to character-
ize a system of N particles let us define r-l as

rt s sy (o)

where v, is the value of y of the ith particle. The maximum value of ! is N and
the minimum value is zero. Can we use the change inI"~" as a measure of change
in the system? To answer this question let us examine several simple processes.

In pair-creation a gamma ray having energy greater than 1 MeV disappears
and an electron and positron are created. The originai gamma ray had a 'y-l equal
to zero. Each of the pair created has a y'l equal to n, where n lies between ze;'o
and unity. The change inT -1 of the system is therefore +2n. For the reverse pro-
cess of annihilation the change is -2n.

As a second process consider the absorption of a photon by a stationary hydro-
gen atom in the g*ound state. Before absorption the proton and electron each have
a 7- of unity and that of the photon is zero. - The absorption of the photon leads to
motwn of the atom, whether or not there is ionization. Thereéfore the: y s of the
pro..on and electron both decrease to p and Mg For the process the net change in

-1«
r*1is2- (np+ne)
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These examples suggest the formulation of a general principle. We propose

the principle in a tentative fashion. Even if it is valid (as we believe), its useful-
ness remains to be shown, The principle may be stated as follows: If the number
of particles of a system decreases, the quantity I -1 of the system also decreases;
if the number increases, the quantity I’ -1 also increases. Note that this is not re-
lated to the energy or momentum content of the compound system since each Yi is
a function of velocity alone, not of mass or energy. We feel the notion can.be ap-
plied to compound particles (as witness the hydrogen atom) and perhaps even to
continuous media, This is of course highly speculative. In our treatment we have
assumed that the system under discussion is isolated, If, during the process con-
sidered, the state of motion of the systemn were changed, the above arguments would

be invalid,

5. KINEMATICS OF NONUNIFORM MOTION AND THE POSTULATES OF RELATIVITY

A oreliminary discussion of the logical structure of the theory is helpful in the
develcepment of the SPT kinematics of nonuniform motion. Einstein's two original
postulates—the principle of relativity and the constancy of light velocity~are com-

~ patible with physically different representations of events such as SPT and MST.

It is therefore quite evident that

a) As physics, the two-postulate system is incomplete.

b) Any particular geometric representation of physical events such as MST
contains logical implications that go beyond those of Einstein's two original
postulates.

(For an interesting discussion of the Einstein postulates see Terletskii, 1968.)

In the past the adequacy of special relativity to deal with accelerated motions
has been the subject of debate. Present considerations suggest that if the special
theory is based solely on the incomplete system specified by Einstein's two postu-
lates, then it cannot deal with accelerated motions. If, however, the theory is aug -
mented by a postulate specifying the nature of the time differentials, then it can
deal with such motions. The MST representation implicitly introduces postulate
(A). The resulting three-postulate version of special relativity is competent to
describe world lines of any physically admissible shape in flat space. This is why
the MST description resolves the twin paradox, even though logical purists, who
admit the two original postulates only, maintain that the so-defined special theory
cannot be applied to the question.

Einstein himself appears to have been of both minds. At first he gave the con-
ventional differential-aging prediction for the twins, but ultimately he retired to the
safe but sterile position that flat-space analysis is inapplicable to curved world
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lines. This viéw, strictly enforced, would deny respectability o Einsteinian pre-
gravitational mechanics and the Dirac equation for the electron. Einstein apparently
did not realize that his original flat-space analysis was postulationally underdeter-

‘mined for all applications beyond the kinematics of uniform one-way motion.

It should be added that our emphasis on the physical need for a third postulate
concerning the nature of the time differentials does not by any means imply a belief
in the sufficiency of three postulates for a physically complete theory. Rather, we
must agree with Synge (1965) that a truly complete enumeration of postulates and
definitions probably lies beyond present capabilities and settle in practice for a
heuristic t_beo:'y that emphasizes the principal postulational elements.

Let us now consider the twin paradox by using SPT, We assign an individual
SPT to each twin and make no hypothesis concerning any geometric relationship
between different SPTs. Consider the traveling twin as No. 1. At proper time
Ty ¢ 0 after instantaneous acceleration, he departs at speed v and travels a spatial
distance Ax along a track such as OA in Figure 1. On this part of the journey he
ages an amount A7, given by Eq. (7a) as ATI = Atfy. On the return journey at
speed v from point A in Figure 1 to x = 0 along a line of reverse slope. (not shown),
he ages an equal amount, so that his total aging is 2A11. Since postulate (B) is
assumed for SPT, dt is inexact and all time increments |At,| are scalar additive
along the traveler's track. The total elapsed t time is therefore twice At, the value
for the outward journey: and the relation between A-rl and At given above applies to
the whole journey.

The total elapsed common time, 2At, is the amount by which the stay-at-home
twin, No. 2, ages during his brother's journey. We can see this by the following
reasoning. In his own SPT, with proper time axis Ty twin No. 2's world line is‘a
straight vertical track at x = 0. SinceAx = Ay = Az = 0 in this space, it follows
from Eq. (2) that 241, = 2At, the total elapsed time during the traveler's absence.

Hence

24r,, = 2At = y207, . : (10)

A
Therefore, in SPT based on postulate {B), jusf as in MST based on postulate (A),
the sf;\y-at -home twin ages by a factor ¥y more than the traveler. The only assump-
tion made in the above derivation is that the same t time i8 measured along the arc
lengths in SPTl and SPTz. This is trivially true, since the same physical set of
Einstein-synchronized clocks is the referent in both cases, namely, the clocks at
rest ir. theé inertial system in which both twins are originally at rest.

Just as in the case of mirror reflection, total confusion results from any at-
wempt to crowd both twins into the same SPT. If both twins were to use the 7 axis
in Figure 1 to register a hypothetical common proper time, the elapsed v time
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between departure and return would be the same for both twins. This is obvious
from the fact that the traveler's world line would intersect the 7 axis at the two
events. Thig is similar to the error in photon description whereby the photon ap-
parently returned at the same timc as it was emitted.

It thus appears that postulate (B) and the SPT representation of events are not
incompatible with a satisfactory kinematic description, provided separate SPTs are
assigned to each particle. But this is not a satisfactory many-body description.
For a more adequate many-body description we must seek a geometric correlation
between the individual SPTsg that will at the same time clarify the sense in which

t time may be said to be conventional.

6. SPT AND THE COLLECTIVIZING CONVENTION

It is apparent from the nature of SPT that any treatment of the relativistic
many -body problem based on it must at the most fundamental level be a many—
proper time theory rather than a shared time theory. In principle we might con-
sider the various 4-spaces, each space associated with an individual particle, as
completély uncorrelated, since the total information content of these spaces is
equivalent to that of any collective space description. Such indepehdence would not
allow a simple formulation of particle interactions and equations of motion. :

If, in the example of the twins just given, we try to synthesize a collective
space representation by superposing the two SPTs in some fixed geometric re-
lat‘ionship, we would have to represent the event of the traveler's return by two
distinct points, with the departure represented by one. To see this, let the event
of departure occur at t-= 0. For the traveler, his return occurs at tp = 247,; but
for the stay-at-home twin, it occurs at tR = yZA‘rl. To obtain a one-to-one cor-
respondence between physical events and mathematical representation points, we
must therefore find a way to continually adjust the different SFTs, This is equiva-
lent to requiring a nonstatic relationship between the SPTs of the individual parti-
cles. A convention must be found that will allow the individual SPTs to be moved
with respect to each other concomitantly with the passage of t time. This will
enable us to satisfy the requirement of one-to-one correspondence. With no unique
convention of this kind, simplicity, linearity, and familiarity recommend the one
that yields the Minkow skian description. The conventions to be discussed are of
some mathematical interest, illustrating as they do the interconvertibility of exact
and inexact differentials.

The simplest system to consider is that of a photon having velocity ¢ and a
point particle at rest as seen by an observer at rest in an inertial frame K. Let
this be the laboratory frame. Each particle is assigned its own private (SPT)i‘.
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For the photon,‘ i=1; for the particle, i=2. The spatial axes of (SF'T)1 and (SP'I‘)2
measure the position (xi, Yis zi) of the appropriate particle in the K frame, and the
ordinate axis measures the proper time of the appropriate particle, The two 7S

are distinct for the two particles and are related through Eq. (7a) to the t time t
measured by the observer,

dr, = dt ly;.
Since 7, is infinite and Y, is unity, we have

d71 = 0; d'r2 = dto.

Each SPT, although referring to the same 3-gpace, thus measures a different
proper time.

To obtain a collective description of the photon and particle we superpose
(SP’I‘)1 and (SPT)z. assigning a ccmmon spatial origin and keeping the spatial axes
parallel. Let Pi' a point on the particle world line fixed in the SP'I‘i diagram,
represent the present position (t = 0) of the ith particle. We adjust SP'I'1 and SPT2
so that P1 and P2 are brought to a common height along their superposed c7 { axes.
In the next instant of t time each particle describes the arc length cét along its SPT
world line. For the photon, 7 remains unchanged and the SP‘I‘1 world line increment
is perpendicular to the photon c7, axis. For the particle at rest in the laboratory
frame, the world line increment is parallel to @he particle cTy axis and normal to
the spatial axes. These represent the twu extreme cases. A particle in K with
velocity v less than c but greater than zero would have a world line incr'ement :
makiné an acute angle a with its cr axis. To bring the two (I"i + c6t) points to a new
common altitude, the photon SPT rust be moved a distance ¢t along the common
direction of the proper time axes while the photon itself moves a distance cét paral-
lel to the spatial axis. The photon would then describe a path at 45° to the vertical
axis of the»collective space SM in which both particles are located. In this collec-
tive space, which is the real coordinate Minkowski space corresponding to K, the
vertical axis is now labeled ct, and the loci of the P1 in SM describe the corre-
sponding MST world lines. Such a collectivization is termed linear or Minkowskian,

To repeat, this underlying or common space representation in which the indi-
vidual P;s trace out their Minkowski world line loci is achieved by moving the
points Pi (present positions of the particle in SPTi) a vertical distance cét as the
particle progresses a distance cét along its world line fixed in SPTi. Concomitant
with this upward motion of F’1 by an amount c6t there is an upward displacement of
the entire SPT, system by an amount cbt(l-cos a) = c6t(l Yy 1), as may be veri-
fied from the geometry of Figure 1,
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The generalization to N point particles moving with generally different varying
velocities v, is obvious. For each particle the relation dr; = dt /v holds, where
dtouapindeﬂudutheeommmﬂmumunndbyacloekurut!nx. The
particular K frame to which all the SPTs are referred is a Lorentz frame, with
spatial and t-time quantities operrtionally defined as in Einstein's theory. Each
proper time axis cviis calibrated by the rule that when the ith particle is at rest
inK, anyim:mmentérrl is identiral with the corresponding At measured by a clock
at rest in K. Note that we have not restricted the particlies to uniformly translating
motion. Accelerations are allowed,

We have thus shown the existence of a simple convention whereby the real co-
ordinate Minkowski space representation of events can be synthesized through
superposition of SPT single particle representations. The 'slippage’ of one SPT
frame past another, introduced by our collectivizing convention, acts to reverse
the nature of t and r differentials., The convention in effect makes dt exact and dr
inexact. Thus, in SM' postulate (A) applies. The particle world line in SPT is not
the same as that in the collective MST but the two are related by elementary
geometry. By offering a clearer appreciation of the conventional nature of t time,
the SPT representation provides something more than a rederivation of old results,
quite apart from the advantage of a true Euclidean metric. Advantages of perhaps
equal importance are the new geometric interpretation of proper time and the sig-
nificance attached to y as an integrating factor,

1. DISCUSSION

A significant result of SPT analysis is a unification of photon and particle
descriptions, The inexactness of dt and the uge of dt as an arc length parameter in
SPT allow us to describe either particle or photon irajectories by the geodesic
equation

& f dt = 0. (particles or photons) (11)
(min) g pr.

The extremum indicated here is a minimum for the actual path between fixed end-
points in SPT relative to nearby alternative paths, Since Eq, (11) is formally identi-
cal with Fermat's principle for light paths, the unification of photon and particle
descriptions is evident, Such unification suggests that there may be a more funda-
mental physical significance in the SPT description than in the MST description,
although the latter will always retain its practical useiulness,
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In the MST description, the exactness of dt, the inexactness of dr, and the use
of dr as an arc length paramet<r of the MST world line, lead to the more familiar
geodesic equation

s J’ dr = 0. (particles only) (12)
(max) o

The extremum here is a relative maximum. It lacks the generality of Eq. 111)
since it does not describe the photon paths. The customary MST representation
thus creates a distinction between photons and material particles contrarv tc much
of the gpli-it of modern physics. Thie distiaction, which has been built into the most
widely accepterd forms of both the special and the general theories of relativity,
may prove to be ar lchilles heel.

In susnmary the postulational situation appears to be as follows. Under our
collectivizing convention, straight line geodesics in SPT transform into straight
line geodesics in MST. Hence, observation of uniferm motion provides no way of
distinguishing postulate (A) from postulate (B).

Our discussion of the twin paradox similarly indicates that no distinction arises
in the observation of accelerated motions, at least in the nonquantum macroscopic
domain of sharply defined world lines. Since Eq. (11) describes both photons and
material particles, whereas Eq. (12) describes only the latter, logical economy
would in the absence of contrary observational evidence appear to favor postulate
{B) as more fundamental. It must, however, be remembered that variational princi-
ples, like covariance or relativity principles, are in themselves no panacea for the
physicist. The pnysics lies not only in the principles but also in the assumptions
defining the time -spare descriptive matrix in which the principles are applied.
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Appendix A

Elementery Kinematics in SPT

We wish to show that we can obtain the formal results of elementary relativity
theory from the SPT representation. In Figure 1 a particle moving with uniform
velocity viwith respect to K describes the world line OA. The uniformity of motion
allows us to replace differentials by finite increments, and we write :

sina = OB/OA = Ax/cAt = viec. (Ali
Moreover,
cosa = :1_3/(;% = A_'riAt 1
-~ = (1 - sinfe) /2
= (1 -vzlcz)”2

(A2)

If we consider the same particle described relative to inertial system K' by the
SPT world line O'A’ of Figure 2, we have

1"
U]

sin a' O'B'/O'A"

Ax'leAt' = v'/c, (A3)

"

>

3|

~

Q

>
)

cos a

= Ariat, (A4)
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where v' is the velocity of the particle with respect to K'. Equations (A2) and (A4)

express time dilatation. From these four equations we can derive the elementary
Lorentz transformations:

Ax' = y(Ax - uldt), (A5)
- At = 'y(At - ﬁAx/cz). (A6)
where
y = (1 -u?ic?) /2 (A7)
and
u = (v-v)1-vvicd. | (A8)

We interpret u as the velocity of K' with respect to K.

Proof
From Eqs. (A3) and (A4),

Ax' = vAtL = vA1/(1 _v'2/c2)1/2‘

From Eqs. (A2) and (A8),

1 - v2/e2 ) 1/2.

1 -v'*©Je

Ax' .= v'At( = y{v - u)At.

Using Eq. (A1) then yvields Eq. (AS), Similarly, from Eqgs. (A2), (A4), and (AB),

At = AT/(1 - v'zlcz)l/2 = At[(l -vi1e3a - v'zlcz)] 1/2

y(l - uv/cz)At,
which with Eq. (A1) yields Eq. (A6).

Equations (A5) and (A6) (supplemented by the relations Ay' =Ay; Az' = Az) are
the equations of the Lorentz transformation, and Eq. (A8) expresses the Einstein
velocity -composition law. From the Euclidean geometry of SPT we have therefore
deduced the simplest kinematic relationships forming the core of special relativity
theory. “This geometry is based on the invariance of the 4-dimensional line element
of Eq. (2) and postulate (B).
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Appendix B
A Prétis of Corathéodory’s Principle ond Thqmodynomics

1

Born (1922) and Buchdahl (1949) have each written quite complete expositions
of Carathéodory's ideac 11909, 1925)., A succinct statement of Carathéodory's
principle is Buchdahl's: "In the neighborhood of any arbitrary initial state J oofa
physical system there exist neighboring states J which are not accessible from Jo

along adiabatic paths.” This is the physical statement dealing with the solutions of
a Pfaffian differential expression.

Consider a Pfaffian expression of the form
P(x,y,z)dx + Q (x,y,z)dy + R{x,y,z) dz = 0. ' (B1)

This equation is integrable if and only if in the neighborhood of any arbitrary point
Gé there are points G that are inaccessible from G ° along solution curves of Eq.

(B1).~This is equivalent to stating that Eq. (B1) is integrable, if there exist func-
tions A(x,v,2z) and F(x,y,z) such that

Pdx + Qdy + Rdz = \dF. (B2)

In thermodynamics the first law yields an equation of the type of Eq. (B1). The

heat absorbed by a system undergoing a quasistatic adiabatic process is zero, and
is written as

dQ (——+ p) av+2% 490 = o0, (B3)
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where U is internal energy, p pressure, v volume, and § temperature. In general,
dQ is not integrable. From Carathéodory's principle, however, we can show that
Eq. (B3) implies the existence of a state function S such that dS = 0 for this quasi-
static adiabatic process and an integrating factor T such that '

dS' = dQ/T. ’ ' . (B4)

This equation expresses the relation between the exact differential of entropy and
the inexact differential of heat.
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