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Abstract

Any formulation of the theory of relativity specifies implicitly or explicitly the

exactness or inexactness of the temporal and spatial different ials that occur. The

Minkowski formulation implicitly assumes the exactness of coordinate (common)

time and the inexactness of proper time. In this paper we examine several other

possibilities. The assumption of the exactness of proper time and inexactness of

common time leads to a space-proper time (SPT) representation of events that

(a) yields the customary formal results of the theory including the differential

aging prediction of the 'twin paradox,' (b) allows an analog of Fermat's principle

to describe both particles and light, -and (c) leads to a many-proper time formula-

tion of the relativistic many-body problem essentially equivalent to the Minkowski

space formulation. Analogies between this SPT geometry and the geometric ap-

proach to thermodynamics, especially as formulated by Caratheodory, suggest the

y function of relativity is an integrating factor with physical meaning for the many-

body problem and also provides insight into the concept of virtual photons.
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A Space -Proper Time Formulation

of Relativistic Geometry

I. INTIIONIIIoN

The theory of special relativity has almost from its beginning been character-

ized by Minkowski space-time geometry. This consists of a ps-ido-Euclidean

metric constructed from the spatial coordinates and the so-called common or co-

ordinate time. A second type of time, the proper time, has been introduced which

coincides with coordinate tiln. for a body at rest in the frame of reference. The

proper time is important for it both expresseF, the timekeeping properties of a

moving body and plays a large role in the formulation of 4-vectors. Yet to the best

of our knowledge, no one has constructed a space-proper time gJeometry.

In writing this paper we wish to consider a space-proper time geom atry as an

alternative relativistic geometry, There are advantages and disadvantages in our

approach, both of which we hope to make evident. We feel Zand obviously this is

our prejudice' that this approach illuminates the meaning of time. A definite dis-

advantage is the appearance of solipsistic space-proper time diagrams, implying

a 'private' world for each particle. A consequence is that such diagrams can de-

scribe events with timelike separatiun only. Recognizing the novelty and strange-

ness of this approach, we ask the reader to suspend judgment until he has read the

paper and considered the potentialities of this geometry.

(Received for publication 10 November 1969)
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The starting point of our investigation is what Costa de Beauregard has called

the first law of time. In his book La Notion de Temps (1963) he has pointed out a

remarkable parallel between the first law of thermodynamics and the expression
for the world line element do. The first law asserts the equivalence of heat Q and

work W,

dU dQ - dW, ()

where U is the internal energy. The expression for the world line element asserts
the equivalence of time and space,

ds 2 = dr 2 - c2dt2, (2)

where dr is the three-dimensional spatial increment, c the velocity of light, and

t coordinate time defined by the Einstein clock-synchronization convention. This

is also the defining equation of the proper time dr, for which we write

ds c (3)&ds
2 :-c 2 d, 2 .(3

Analogies are admittedly treacherous and rarely if ever allow a one-to-one

corresponde -e. The first law of thermodynamics is a linear relation, whereas
the first law of time, Eq. (2), is a quadratic one. The internal energy is a state

function of a thermodynamic system and Is an exact differential, whereas both the
heat and work are path-dependent and are therefore inexact differentials. The first

law of thermodynamics thus expresses an exact differential as the difference be-

tween two inexact differentials.
Combining ,qs. (2) and (3), we write the proper time as

2 2 = 2 2 2

cd& 2 dt2 - dr2 . (4)

The path element dr is by its very nature path-dependent; this is of course a tau-

tology. The similarity between Eqs. (1) and (2) pointed out by Costa de Beauregard

has suggested a need for reexamining the exactness of the differentials appearing

in Eq. (2). To pursue the analogy, we wish to consider the proper time as an exact

differentiel while treating the coordinate time as inexact or path-dependent in an
appropriate space. This approach draws heavily upon classical thermodynamics,

especially as formulated by Caratheodory (1909, 1925).
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2. Il LOGICAl. RqSs OF SPACE-PROPER TI GEOIETRY

The Lorentz transformations have the property of leaving the proper time ele-

ment d of Eq. (4) invariant. Although the path element dr is inexact, it may be

written as the slm of the squares of three exact differentials, the usual cartesian

coordinates,

dr = (dx 2 + dy 2 
4- d2)1 1 2 . (5)

This enables us to rewrite Eq. (4) as

c 2 d r2 = c2 t 2 - (dx 2 +dy 2 +dz 2 ). (6)

This equation lacks physical content until we specify the nature of the time differ-

entials. There are four alternative physical postulates:

(A) dt exact, dr inexact.
(B) dt exact, dt inexact.

(C) d and dt both exact.
(D) d and dt both inexact.

Minkowski tacitly assumed hypothesis (A) and his results are well known (Lorentz

et al, 1958). Hypotheses (C) and (D) will not be considered in this paper, although

we shall briefly examine the physical implications of (C) in Sec. 4. We ask the

reader to entertain hypothesis (B) as A logical possibility. We hope to show (1) that

the results are consistent with the principle of relativity, (2) that the principle of

logical economy-Occam's razor-may be invoked in favor of (B),and (3) that obser-

vations on macroscopic systems are unlikely to provide a crucial test for distin-iguishing between (A) and (B).

Equation (6) may be rewritten as

c 2 dt 2 = c 2 d' 2 +dx 2 +dy 2 + dz 2 . (6 a)

If we restrict ourselves to timelike intervals (dr 2 > 0) and assume hypothesis (B),

dt 2 is then represented by a positive definite sum of squared exact differentials.

The quantity cdt may then be interpreted as an arc length in a Euclidean 4-space,

just as dr, whose square is a positive definite sum of three squared exact differen-

tials [Eq. (5)), is an arc length in a Euclidean 3-space. It seems to be generally

true, though seldom noted, that the natural quantities to use as coordinates in

)-
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geometric representations of physical processes are those whose differentials are

exact. For example, one does not integrate dr directly but rather with respect to

ax, dy, and dz. We thus find it reasonable to use xyz, and cr as the coordinates of

the Euclidean 4-space in which cdt is an arc length. This 4-space will be designa-

ted as 'space-proper time' (SPT In the Mnkowski representations, which assume

postulate (A), the coordinates are taken to be x,yz and either ict or ct. For con-

venience and brevity we shall re.fer to the Minkowski space-time representations

as MST.

Before going any further we must admit that SPT necessarily lacks the univer-

sal L -presentation capabilities of MST. Since r is the Proper time of an individual

particle, SPT is essentially solipsistic. Each SPT must oe thought of as a 'private

space' belonging to one and only one particle, namely, the one with respect to which

the coordinate cr is defined. This is not so great a disadvantage as would at first

.Lppear. If each particle has its own timekeeping properties unique to the geometry

describing the particle, one finds nonsimultaneity of events in different systems a

quite natural occurrence. In SPT it is no longer appropriate to call the time de-

fined by Einstein's synchronization convention 'coordinate time' so we shall refer

to it as common time or, more explicitly, t time, an expression that has the ad-

vantage of being free of any connotations. Its increment cAt will play, as noted, the

role of arc length along the SPT world line.

3. IlF Sl"r III;AGII %%I AND IORENTZ TIANSFOiI'AVIO

To make the preceding ideas more concrete let us develop elementary kine-

matics in SPT. Consider a particle moving with constant velocity along the x axis

of an inertial reference frame K. Since the velocity has an x component only, we

may suppress the y and z coordinates. Hence, following the ideas of Sec. 2, we use

c' and x as the coordinates and draw the two-dimensional SPT diagram shown in

Figure 1. Since SPT is a flat space with a positive definite metric, the results of

Lorentz transformations (for parallel motions representable in the cr,x plane)

become theorems of Euclidean plane geometry. Equation (6a) is simply the

Pythagorean theorem for triangle QAB in Figure 1. The points 0 and A represent

two events in the history of the particle moving with velocity v parallel to the

x axis, measured in K. The two events are separated by an interval cdt of common

time, measured in K. By measurement in K we understand space and common time

measurements with Einstein-synchronized clocks and meter sticks at rest in K.

Consider a second inertial frame K' (Figure 2) moving with velocity u with
( respect to K, with the x and x' axes coincident. The relationship between v, V', and

u is derived from SPT principles i Appendix A. The two events represented by 0

and A in frame K (Figure 1) are represented by 0' and A' in frame K' (Figure 2).
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Figure 1. SPT Represen-
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Particle Moving Uniformly
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Figure 2. SPT Representa-
tion of Trajectory of a
Particle Moving Uniformly
in the 'x' Direction Relative cr
to the Lorentz System K' cdt
(system K' moves with
velocity u with respect #0
system K)

d x " '- .

If we take K and K' as being coincident when the first event occurs and identify

0 and 0' as the origins of K and K', superposition of Figures 1 and 2 shows that A

and A' lie on the same line of constant 7. The Lorentz transformations, being those

that leave d invariant, are this transformations of shear on lines (more generally,

hyperplanes) of constant r. It is worth noting that the Galilean transformations of

Newtonian physics are also transformations of shear on hyperplanes of constant t,

where t in classical physics is an absolute time parameter. Since classical mechan-

ics contains no universal constant c, however, the 'space-absolute time' (SAT) in

which such transformations occur is dimensionally inhomogeneous and therefore

not directly comparable to the homogeneous 4-spaces of relativity theory. The

absence of a universal constant makes it impossible to assign a natural dimension
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to lhe are length of the classicsJl world line but does met preclude formation of
meebupica~l variatlogjal principles in SAT.

ae rin to Figures I and 2 we note lst lthe quastity IV. plotted as --I onl
ordinate axis, is in an ceame the proper time of the particular particle 1rreetd.
I An abstract 'Proper time" Indendent ot the Particle has so Phsical meaning.
Thme proper tihe? is to th time shown by a clock co-inosing with lhe particle. In
gene ral. this clock Is not permanently at rest in any Inertial system. This is the
origin of the solipsistic sature of SPT.I The SPr world line 40A In Figure 1) of

any m&Croseoplc particle always exists In a fixed relatinsip to Its SPY axes
sneat every late' the particle occupies a definite spstial iocation. Ithis, a ove-

to-one, tor. espmidruce exists between a sequence of contiguous -qmesentallon
points in SIPY and the dynamic history of the particle. Further pir Wo of the phys-
cal'exitatce' of spae-prper tinme is not needed nmw can it be gives. We cnt
plot worwF lines for more than one particle in am. SPY fti:ramn. Nlor can we Cow-

calve at such a diagram in the absence of any Particle. In this 028s SPY is r -
Crete.

The sbear-related represeuations of SPYr geowetrically exprss the Principle
of relattvity. Observers in diffe-vat inertial frames who plot tme first of fto ev ns
associated with a given particle at a common SPT orgn& will plot IL"- second 2:
variousJl on the nme constant v hyperplane. Each locus refers to a differest
Lcrenft frame. but all loci are connected through shear trn- rmtos Thus.
the SPYT representation of events. like that of NW.T is not inmique or abslte but is
physically inde Pterminate within a Lorestz trandormation in codloesity With lihe
relativity principle, Thme difference is that in MIST the world lines remain invariant
wile the axes move under a Lorel transformation (rotate i lt is the temporal
cuordinate, scissor together if ct is). In SPT the axes remain orlboonal for all
frames while thme world line moves by shearing. Classical SAT has features in
common with both It resembles SPT in the nature of its transformations but re-
sembles UST ir possessing the capability of describing simultaneously any anumber
of particles. The invariance of the SPY axes under Lorentz transioruat..3ns pre-
vents portrayal of relative motion between two inertial frames. The relative
motion between the frames must be inferred from the difference in slopes of time
two world lines plotted in the two appropriate SPY diagrams (see Figure~s I and 2).

It must be noted that SPY cannot describe events of spacelike separation
simply-again owing to the solipsistic nature of the representation. It, can repre-
sent simply only events of tizue'lke separation on the world line of a single partie!e.
Spacelike separations must of nacessity refer to two or more particles. A striking
feature of !!PT diagrms is thus the of the 'elseyhere' beyond the light cone
in MST. Superficially, the situation resembles the one that might obtain were the
forward and backward light cores associated with a particular event in IUST squeezed
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reversible equtirn. Mlorcover, no 'observation' need have been made on the sys-

tern in the strict Copenhagen sense. Nevertheless, something irreversible has taken

place :it the mirror as is shown by the occurrence of radiation reaction. After

Mirror recoil, propagation of the photon can no ]onger be virtual-the photon has

'lo)st the option of changihv, its mind.' Indeed, it can no longer be the same photon

since it must have , sliqhtly lower frequency. This second photon, like the first,

rniist be described by a steadily increasingAt. The description of such two-way,

propaqation is easy in MIST but requires caution and is susceptible to ready misin-

ter.,rctation in SPT.

Sine SPT diagirams -re different for different particles, the two photons cannot

be re'presented in one ,i'.ram. Fach photon is represented in its own SPT on its

)fl Imyerplane of constant '7. Otherwise, A -r = 0 would imply that after reflection

t1,e ,-otnn returns to the observer at the same proper time it was emitted. Actually

this w'ould ,2, the s;tme ,.s attempting to crowd three different proper times-those

of the t-' photons and that of the observer-into one SPT diagram. To treat two or

morc p.articles, separate SPT diagrams must be introduced. The problem of col-

Ie(::tive description is then one of correlating the single particle SPTs.

If v:e assume postulate (B), Eq. (7a) becomes highly suggestive. It is at this

point '.e wish to introduce our 'thermodynamic' argument. Appendix B contains a

brief ,nrn.rv of the Carathcodory formalism. By dividing the inexact differential

(it by 7 we convert it into an exact differential d. Therefore t is an integrating

f:,-tor f (it in SPT. No%-.- -e know that a Pfaffian differential expression with two

variables always possesses an intei, rating factor. The "raffian form for t time

wo,,ld then be (it - 0. In thermodynamics the inexact differential of heat is dQ.

The condition for adibaticity is that dQ equal zero. We conclude that the virtual

photon plays the same role in our SPT geometry as adiabaticity does in thermody-

nannics. Both concepts-quantum virtual processes and adiabatic processes-also

share the quality of being idealized system 'motions' that are strictly unobservable.

It should, however, be noted that adiabaticity, although a necessary condition for

thermodynamic reversible behavior, is not sufficient in itself. An adiabatic process

is not necessarily isentropic, as witness a Joule expansion. Consequently, the

entropy differential dS is not always equal to dQ/T, and so we write the inequality:

dS dQ/T. (8)

In this sense we do not have an exact correspondence between zero dt and zero dQ,

for the virtual photon must be reversible. Moreover, Eq. (7a) is an equality, not an

inequality, and we can always integrate it for real photons and material particles

as well as for virtual photons. The SPT formalism is thus even simpler than that

of thermodynamics.

Best Available Copy
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From the SPT analysis we have arrived at the following ideas, which are

admittedly highly speculative but nonetheless suggestive. In thermodynamics the

integrating factor is more than a formal mathematical device. The temperature

has profound physical significance as a statistical measure of the energy of a sys-

tem. It is used in the Clausius formulation of the second law: heat cannot flow

from a body at a lower temperature to one at a higher temperature without mechani-

cal work having been done. We therefore ask the more general question: If an inte-

grating factor appears in the analysis of a physical problem, does it have physical

significance? Since we interpret the Y function as an integrating factor, we seek

such an interpretation. We should note here that whether we accept postulate (A)

and MST, or accept postulate (B) and SPT. Eq. (7a) expresses a relation between

an exact and an inexact differential. Any physical interpretation of Y is therefore

not restricted to the SPT formalism.

In attempting to ascribe a physical meaning to the y function we look for clues

in the meaning of temperature. Temperature is a statistical measure of the energy

of a system-to speak of the temperature of one electron is meaningless. The y

function can be written for a single particle and so is not statistical. Involving

velocity as it does, y is therefore related to energy, and so is characteristic of the

state of a particle. For any given particle, y has a minimum value of unity (particle

stationary in the frame) and a maximum value of infinity for a photon. The recipro-

cal of ), therefore lies in the range between zero and unity. To attempt to character-

ize a system of N particles let us define r 1 as

V (9)
i=1

where yi is the value of y of the ith particle. The maximum value of r is N and

the minimum value Is zero. Can we use the change in f as a measure of change

in the system? To answer this question let us examine several simple processes.

In pair-creation a gamma ray having energy greater than 1 MeV disappears-1
and an electron and positron are created. The original gamma ray had a v equal

to zero. Each of the pair created has a y equal to n, where -n lies between zero

and unity. The change in r -1 of the system is therefore +21. For the reverse pro-

cess of annihilation the change is -2-n.

As a second process consider the absorption of a photon by a stationary hydro-

gen atom in the ground state. Before absorption the proton and electron each have
-1

a Y- of unity and that of the photon is zero. The absorption of the photon leads to~-1
motion of the atom, whether or not there is ionization. Therefore the Y s of the

proton and electron both decrease to 7p and le. For the process the net change in

rF 1 2-(,1 
+  q e).

p e

.t
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These examples suggest the formulation of a general principle. We propose

the principle in a tentative fashion. Even if it is valid (as we believe), its useful-

ness remains to be shown. The principle may be stated as follows: If the number

of particles of a system decreases, the quantity r 1 of the system also decreases;
-lif the number increases, the quantity r also increases. Note that this is not re-

lated to the energy or momentum content of the compound system since each yi is

a function of velocity alone, not of mass or energy. We feel the notion can ,be ap-
plied to compound particles (as witness the hydrogen atom) and perhaps even to

continuous media. This is of course highly speculative. In our treatment we have

assumed that the system under discussic:)n is isolated. If, during the process con-

sidered, the state of notion of the system were changed, the above arguments would

be invalid.

-5. KINEMATICS (F NONIJNIFORMl MOTION AND TIlE POSTU.ATES OF RELATIVITY

A oreliminary discussion of the logical structure of the theory is helpful in the

develL~pment of the SPT kinematics of nonuniform motion. Einstein's two original

postulates-the principle of relativity and the constancy of light velocity-are com-

patible with physically different representations of events such as SPT and MST.

It is therefore quite evident that

a) As physics, the two-postulate system is incomplete.

b) Any particular geometric representation of physical events such as MST

contains logical implications that go beyond those of Einstein's two original

postulates.

(For an interesting discussion of the Einstein postulates see Terletakii, 1968.)

In the past the adequacy of special relativity to deal with accelerated motions

has been the subject of debate. Present considerations suggest that if the special

theory is based solely on the incomplete system specified by Einstein's two postu-

lates, then it cannot deal with accelerated motions. If, however, the theory is aug -

mented by a postulate specifying the nature of the time differentials, then it can

deal with such motions. The MST representation implicitly introduces postulate

(A). The resulting three-postulate version of special relativity is competent to

describe world lines of any physically admissible shape in flat space. This is why

the MST description resolves the twin paradox, even though logical purists, who

adrmit the two original postulates only, maintain that the so-defined special theory

cannot be applied to the question.

Einstein himself appears to have been of both minds. At first he gave the con-

ventional differential-aging prediction for the twins, but ultimately he retired to the

safe but sterile position that flat-space analysis is inapplicable to curved world



12

lines. This view, strictly enforced, would deny respectability to Einsteinian pre-

gravitational mechanics and the Dirac equation for the electron. Einstein apparently

did not realize that his original flat-space analysis was postulationally underdeter-

mined for all applications beyond the kinematics of uniform one-way motion.

It should be added that our emphasis on the physical need for a third postulate

concerning the nature of the time differentials does not by any means imply a belief

in the sufficiency of three postulates for a physically complete theory. Rather, we

must agree with Synge (1965) that a truly complete enumeration of postulates and

definitions probably lies beyond present capabilities and settle in practice for a

heuristic theory that emphasizes the principal postulational elements.

Let us now consider the twin paradox by using SPT. We assign an individual

SPT to each twin and make no hypothesis concerning any geometric relationship

between different SPTs. Consider the traveling twin as No. 1. At proper time

T -0 after instantaneous acceleration, he departs at speed v and travels a spatial

distance Ax along a track such as OA in Figure 1. On this part of the journey he

ages an amount Avr, given by Eq. (7a) as A- 1 = At/y. On the return journey at

speed v from point A in Figure 1 to x = 0 along a line of reverse slope. (not -shown),

he ages an equal amount, so that his total aging is 2A'r I . Since postulate (B) is

assumed for SPT, dt is inexact and all time increments I AttI are scalar additive

* along the traveler's track. The total elapsed t time is therefore twice At, the value

for the outward journey; and the relation between A 1 and At given above applies to!1
the whole journey.

*The total elapsed common time, 2At, is the amount by which the stay-at-home

tw in, No. 2, ages during his brother's journey. We can see this by the following

reasoning. In his own SPT, with proper time axis r2" twin No. 2's world line is~a

* straight vertical track at x = 0. Since Ax = Ay = Az = 0 in this space, it follows

from Eq. (2) that 2Ar 2 = 2At, the total elapsed time during the traveler's absence.€2
Hence

2&r. 2At = y2A 1 . (10)

Therefore, in SPT based on postulate tB), just as in MST based on postulate (A),

the stay-at-home twin ages by a factor y more than the traveler. The only assump-

tion made in the above derivation is that the same t time is measured along the are

lengths in SPT I and SPT2 . This is trivially true, since the same physical set of

Einstein-synchronized clocks is the referent in both cases, namely, the clocks at

rest in the inertial system in which both twins are originally at rest.

Just as in the case of mirror reflection, total confusion results from any at-

Sxmnpt to crowd both twins into the same SPT. If both twins were to use the 1 axis

in Figure 1 to register a hypothetical common proper time, the elapsed - time



13

between departure and return would be the same for both twins. This is obvious

from the fact that the traveler's world line would intersect the i axis at the two

events. This is similar to the error in photon description whereby the photon ap-

parently returned at the same time as it was emitted.

It thus appears that postulate (B) and the SPT representation of events are not

incompatible with a satisfactory kinematic description, provided separate SPTs are

assigned to each particle. But this is not a satisfactory many-body description.

For a more adequate many-body description we must seek a geometric correlation

between the individual SPTs that will at the same time clarify the sense in which

t time may be said to be conventional.

6. SPT AND 11 lI.I,CTIVIZIN(; C(ONVKNTION

It is apparent from the nature of SPT that any treatment of the relativist!,

many-body problem based on it must at the most fundamental level be a many-

proper time theory rather than a shared time theory. In principle we might con-

sider the various 4-spaces, each space associated with an individual particle, as

completely uncorrelated, since the total information content of these spaces is

equivalent to that of any collective space description. Such independence would not

allow a simple formulation of particle interactions and equations of motion.

If, in the example of the twins just given, we try to synthesize a collective

space representation by superposing the two SPTs in some fixed geometric re-

lationship, we would have to represent the event of the traveler's return by two

distinct points, with the departure represented by one. To see this, let the event

of departure occur at t 0. For the traveler, his return occurs at tR 2A r1; but

for the stay-at-home twin, it occurs at tR = y2AT 1. To obtain a one-to-one cor-

respondence between physical events and mathematical representation points, we

must therefore find a way to continually adjust the different SPTs. This is equiva-

lent to requiring a nonstatic relationship between the SPTs of the individual parti-

cles. A convention must be found that will allow the individual SPTs to be moved

with respect to each other concomitantly with the passage of t time. This will

enable us to satisfy the requirement of one-to-one correspondence. With no unique

convention of this kind, simplicity, linearity, and familiarity recommend the one

that yields the Minkowskian description. The conventions to be discussed are of

some mathematical interest, illustrating as they do the interconvertibility of exact

and inexact differentials.

The simplest system to consider is that of a photon having velocity c and a

point particle at rest as seen by an observer at rest in an inertial frame K. Let

this be the laboratory frame. Each particle is assigned its own private (SPT)1 .

N;il



14

For the photon, i 1; for the particle, i 2. The spatial axes of (SPT) I and (SPT) 2

measure the position (x i , Yi, zi) of the appropriate particle in the K frame, and the

ordinate axis measures the proper time of the appropriate particle. The two 'is

are distinct for the two particles and are related through Eq. (7a) to the t time to

measured by the observer,

dt 0 d /yi, .

Since YI is infinite and V2 is unity, we have

d r 0; &r -1 'dt o

Each SPT, although referring to the same 3-space, thus measures a different

proper time.

To obtain a collective description of the photon and particle we superpose

(SPT) I and (SPT) 2 , assigning a ccmmon spatial origin and keeping the spatial axes

parallel. Let Pi, a point on the particle world line fixed in the SPTi diagram,

represent the present position (t = 0) of the ith particle. We adjust SPT1 and SPT2

so that P1 and P 2 are brought to a common height along their superposed cri axes.

In the next instant of t time each particle describes the arc length c6t along its SPT

7 world line. For the photon, r remains unchanged and the SPT 1 world line increment

is perpendicular to the photon cI 1 axis. For the particle at rest in the laboratory

frame, the world line increment is parallel to the particle c' 2 axis and normal to

the spatial axes. These represent the two extreme cases. A particle in K with

velocity v less than c but greater than zero would have a world line increment

making an acute angle a with its ci' axis. To bring the two (P1 
+ c6t) points to a new

common altitude, the photon SPT must be moved a distance c6t along the common

direction of the proper time axes while the photon itself moves a distance c6t paral-

lel to the spatial axis. The pbaton would then describe a path at 450 to the vertical

axis of the collective space SM in which both particles are located. In this collec-

tive space, Which is the real coordinate Minkowski space corresponding to K, the

vertical axis is now labeled ct, and the loci of the P1 in SM describe the corre-

sponding MST world lines. Such a collectivization is termed linear or Minkowskian.

To repeat, this underlying or common space representation in which the indi-

vidual Pis trace out their Minkowski world line loci Is achieved by moving the

points P1 (present positions of the particle in SPT i ) a vertical distance c6t as the

particle progresses a distance c6t along its world line fixed in SPTi . Concomitant

with this upward motion of Pi by an amount c6t there is an upward displacement of

the entire SPTi system by an amount c6t (1-cos a) = c6t(1 - y as may be veri-

itl fied from the geometry of Figure 1.
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The genralization to N point particles moving with generally differeut varying
velocities v, is obvious. For eseh particle the relation dr~ 11 dt 0IV I holds, where

dti Isagain defined as the common lime as measured by aclock at reutlInK. The
particuular K fr-ame to which all the SPTa are referred In a Loreots frame, with
spat-i and t-tme quantities operutiosully defined as In Rinsteia's theory. Each
proper time axis cri is calleated by the rule that when the ith paitile to at rest

in K. any Incremen Al1 Is Idnia with the corresponding At measured by a clock
at rest In K. Note that we have not restricted the particles to uniformly translating

motion. Accelerations are allowed.
We have thus shown the existence of a simple convention whereby the real co-

ordinate Minkowald space representation of events can be synthesised through
Superposition of SPT single particle representations. The 'slippage' of one SPT
frame past another. introduaced by our collectivizing convention, acts to reverse

the nature of t and 'r differentials. The convention in effect makes dt exact and di-
inexact. Thus, in SM., postulate (A) applies. The particle world line in SPT f s not
the same as thit in the collective MST but the two are related by elementary
geotmetry. By offering a clearer appreciation of the conventional nature of t time,
the SPT representation provides Something more than a rederivation of old results,
quite apart frOm the advantage of a true Euclidean metric. Advantages of perhaps
equal importance are the new geometric interpretation 'of proper time and the sig-
nificance attached to y as an integrating factor.

7. DLSCIISIW'4

A significant result of SPT analysis is a unification of photon and particle
descriptions. The inexactness of dt and the use of dt as an arc length parameter in
SPT allow us to describe either particle or photon trajectories by the geodesic
equation

(mn f dt = 0.- (particles or photons) (11)
SPT

The extreunum indicated here is a minimum for the actual path between fixed end-
points in SPT relative to nearby alternative paths. Since Eq. (11) is formally identi-
cal with Fermuat's principle for light paths, the unification of photon and particle
descriptions is evident. Such unification suggests that there may be a more funda -
mental physical significance in the SPT description than In the MST description,

although the latter will always retain its practical userulneas.
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In the MST drscription, the exactrss of dt, tht- inexactness of d-r. and the use

of dir as an arc length paramet'-r of the NIST world line, lead to the more familiar

geodesic equation

6 f dr = 0. (articles only) (12)
(mSx) T

The etreminn here is a relative maximum. It lacks the generality of Eq. it 1)

since it does not describe the photon paths. The customary MST representation

thus ereates a distinction between photons and material particles contrarv to much

of the sp -it of modern physics. This distinction, which has been built into the most

widely accepted forms of both the special and the general theories of relativity,

may prove to be an At-hilles heel.

In summary the postulational situation appears to be as follows. Under our

collectivizing convention, straight line geodesics in SPT transform into straight

line geodesics in IST. Hence, observation of uniform motion provides no way of

distinguishing postulate (A) from postulate (B).

Our discussion o( the twin paradox similarly indicates that no distinction arises

in the observation of accelerated motions, at least in the nonquantum macroscopic

domain of sharply defined world lines. Since Eq. (11) describes both photons and

material particles, whereas Eq. (12) describes only the latter, logical economy

would in the absence of contrary observational evidence appear to favor postulate

(B) as more fundamental. It must, however, be remembered that variational princi-

ples, like covarance or relativity principles, are in themselves no panacea for the

physicist. The physics lies not only in the principles but also in the assumptions

defining the time-space descriptive matrix in which the principles are applied.
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Appendix A
Elemntary Kinematics in SPT

We wish to show that we can obtain the formal results of elementary relativity

theory from the SPT representation. In Figure 1 a particle moving with uniform

velocity v ,with respect to K describes the world line 6A. The uniformity of motion

allows us to replace differentials by finite increments, and we write

sin a = B/A x/cAt =v/c. (Al1)

Moreover,

cos a ABIOA Ar=

-- (1 -sin a)

- ( ~v;l (A2)

If we consider the same particle described relative to inertial system K' by the

SPT world line O'A' of Figure 2, we have

sin a'I O'B'IO'A' Ax'Ic~t' v'Ic, (AM)

Co C'OA ArAl M
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where v' is the velocity of the particle with respect to K'. Equations (A2) and (A4)

express time dilatation. From these four equations we can derive the elementary

Lorentz transformations:

Ax' Y(Ax - uAt), (A5)

At' Y(At - utx/c2 , (A6)

where

Y= ( - u2/c2)-I 2 (A7)

and

u - (v -v')/(1 - vv/c 2). (A8)

We interpret u as the velocity of K' with respect to K.

Proof

From Eqs. (A3) and (A4),

Ax' v'At' v'A](l -v'2/c2)
I /2

From Eqs. (A2) and (A),

Ax ., V'At I -V2/CeY2 1/2. tI ,/ 2. -(v - u)At.

Using Eq. (A 1) then yields Eq. (A5). Similarly, from El.qs. (A2) (A4), aind (AN;),

At' A"/(1 - v2/c2)I/2 = At[(1 -v 2 /c 2 )/(I -v'2/c2)] 1/2

= uv/c 2)At,

which with Eq. (Al) yields Eq. (A6).

Equations (A5) and (A6) (supplemented by the relations Ay' Ay; Az' --Az) are

the equations of the Lorentz transformation, and Eq. (A8) expresses the Einstein

velocity-composition law. From the Euclidean geometry of SPT we have therefore

deduced the simplest kinematic relationships forming the core of special relativity

theory. This geometry is based on the invariance of the 4-dimensional line element

of Eq. (2) and postulate (B).

g1
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Appendix B

A Preocis of Corotheodory's Principle and Thermodynanics

* Boyn (1922) and Buchdahl (1949) have each written quite complete expositions

of Carathe'odory's ideaz :1909, 1925). A succinct statement of Carathidodory's

principle is Buchdahl's: "In the neighborhood of any arbitrary initial state -o of a

physical system there exist neighboring states J which are not accessible from J0
along adiabatic paths." This is the physical statement dealing with the solutions of

a Pfaffian differential expression.

Consider a Pfaffian expression of the form

P(x,y,z)dx + Q (xy,z)dy + R(x,y,z) dz 0. (BI1

This equation is integrable if and only if in the neighborhood of any arbitrary point

10 there are points G that are inaccessible from G0 along solution curves of Eq.

(B1). This is equivalent to stating that Eq. (Bl) is integrable, if there exist func-

tions X(x,y,z) and F(x.y,z) such that

Pdx+ Qdy+ Rdz E- XdF. (B2)

In thermodynamics the first law yields an equation of the type of Eq. (B). The

heat absorbed by a system undergoing a quasistatic adiabatic process is zero, and

is written as

j dQ + p) dv +2UdO = 0, (B3)

I

*1*I
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where U is internal energy, p pressure, v volume, and 0 temperature. In general,

dQ is not integrable. From Carath4eodory's principle, however, we can show that

Eq. (B3) implies the existence of a state function S such that dS - 0 for this quasi-

static adiabatic process and an integrating factor T such that

dS'- dQ/T. (B4)

This equation expresses the relation between the exact differential of entropy and

the inexact differential of heat.
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