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Abstract

It will be argued that Minkowski's implementation of distances is not unique. An alternative
implementation will be proposed. If Einstein’s prescription for light speed measurements is
applied to the new implementation, the special theory of relativity is recovered. Yet, the present
model is based on a spacetime with a preferred frame of reference. A clock at rest with respect to
the preferred frame is used for the parametrisation of events. The proper time of an object is taken
as its fourth coordinate. Distances will be measured according to the Euclidean metric. In the
present approach mass is a constant of motion. A mass will be ascribed to photons and neutrinos.
Mechanics, gravitational dynamics and electrodynamics will be reformulated in close
correspondence with classical physics. The new gravitational dynamics leads to the correct
predictions for the deflection of light and the precession of perihelia, while it is based on a flat
spacetime, A new conservation law emerges from the new mechanics: the conservation of proper
time momentum. It allows for a mechanical explanation for Compton scattering and pair
annihilation. In the new electrodynamics the electric field will be proportional 1o the proper time
velocity. Intriguing consequences will be discussed. The equation of motion for the proper time
momentum turns oul to be very powerful. In the classical limit it reduces to the classical law for
the conservation of energy. The Bohr model for the atom will be given & new explanation. As
will be discussed briefly, the present approach gives a new notion to matters as energy, the
structure of spacetime, antiparticles and the arrow of time. In fact, the contents of the present paper
will have extreme implications for the foundations of physics in general.
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1. Introduction

“Was Einstein Right?" is one of the numerous books which puts the theory of
relativity (TR) to the test [1]. The answer always tums out to ‘be confirmative.
Yet, Minkowski's implementation of distances is not completely satisfactory
for a lot of physicists, including the present author. For instance, it can be
argued that the time parameter, the fourth coordinate and the Minkowski
distance are not defined in a canonical way [2,3]. It also has been
demonstrated that the concept of a curved spacetime is inconsistent [4]. If one
sets up a parametrised spacetime in a canonical way, one inevitably arrives at
an absolute Euclidean spacetime (AEST). With ‘absolute’ is meant that there
is a preferred frame of reference. Distances are measured according to the
Euclidean metric, even in the presence of a gravitational field. So, the AEST
is flat everywhere. According to the AEST theory the proper-time of an object
1s taken as the fourth coordinate of that object. In practise this means that the
TR and the AEST convert into each other by rearranging equations such that
the time parameter serves as the proper-time and vice versa: 1 «> 7. As a
consequence, the proper-time velocity w,:=edt/dr will appear in the
dynamical equations in a very pronounced way. Gill et al have the subsequent
electrodynamics  appropriately denoted as proper-time classical
electrodynamics [5). This notation will be followed throughout the paper. In
this paper also gravitational dynamics will be reformulated. For obvious
reasons it will be denoted as proper-time gravitational dynamics. The new
mechanics will be denoted as proper-time mechanics. The reformulation will
be in close correspondence with classical physics. Since electromagnetic
interactions can also be decribed by quantum electrodynamics, it can be
expected that quantum field theory and thus also quantum mechanics should
be reformulated according to the new concept of time. This opinion is shared
with Gill et al [6]. It is the personal belief of the author that in the future a
completely new description of physics will emerge. The latter can adequately
be denoted as proper-time physics.

The plan of the paper is as follows. In Section 2 an argument will be given
against Minkowski’s implementation of distances as well as against the
related Minkowski’s metric. To be specific, a ‘relativistic” football match will
be considered in order to show as simple as possible the inconsistency in
Minkowski’s definition of four-dimensional distances. An alternative will be
proposed. In the alternative model, distances are measured according to
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Euclid’s definition. It will be argued that the proper-time of an object should
be taken as the fourth coordinate of that object, while the proper-time of the
clock (of the observer) at rest in the frame of reference should be taken as the
time parameter. It will also be argued that spacetime is absolute in the sense
that there is a preferred frame of reference. A

In Section 3 the AEST will be set up on the basis of an obvious postulate and
some first principles. Also, the correspondence with the theory of relativity
will be illuminated. It will, for instance, be shown that the special theory of
relativity (STR) can be completely recovered if measurements are conducted
as prescribed by Einstein.

Section 4 is about proper-lime mechanics. That is, we will consider collisions
between particles. Some i1lluminating examples will be given.

In section 5 proper-time gravitational dynamics will be considered in a flat
AEST. Although it seems quite opposite to the general theory of relativity, 1t
leads to the same predictions. By means of the result of Section 2 a decisive
argument will be given against the concept of spacetime ‘curvature’.

In Section 6 proper-time electrodynamics will be considered in an AEST. As a
striking example, Bohr's model for the atom will be reconsidered.

In Section 7 we will discuss the consequences of the sign of proper-time.

In Section 8 some words will be spent on the direction of further research.

2. A ‘relativistic’ football match

In this section a football match will be considered from the AEST point of
view and the TR point of view respectively. In the case of the latter 2 major
flaw will be exposed.

Let us imagine a football stadium. The stadium is filled with spectators and a
football match is about to begin. Let the stadium clock be situated at the
center C. The stadium clock will be used to keep track of the order of the
successive events. For obvious reasons it will be referred to as the time
parameter 1. Coincidently, it also represents the proper-time of the audience
(the observers): r=1.. Furthermore, identical clocks will be mounted on
player 4 and the ball B. They represent the proper-time of the player, t,, and
the proper-time of the ball, t,, respectively. The match starts at, say, three
p.m. Al that instant of time all the three clocks read 15.00. Since the AEST
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description of the match diverges from the TR description, the match has to be

described separately. We will start with the AEST description.

As soon as the referee has blown the whistle, player A starts to run. For the

infinitesimal interval of player A4 we have according to the AEST theory
dSi=dxi+d}’:+ﬂJ£hi. i (1

Note that d=, = 0 for a horizontal football court. For the infinitesimal interval

of the stadium clock we have

ds} =c’di; =¢tdt’ .

(2)
Note that for the stadium clock also dx, = dy. = 0, since the stadium clock is

at rest. That is, we conveniently regard it as the preferred frame of reference.
According to the AEST theory every object moves with a four-dimensional
velocity equal to the speed of light. Hence,

or
r il W ST 2 i 1 1
e'di” =dx’ +dy +c'dt) .

(4)

From the latter we obtain the following expression for the time dilation of

player 4:
dv, =~v1-v'[c'dr | (5)

where v is the spatial velocity of player 4. Suppose that after half an hour
player 4 hits the ball. At that very instant of time the stadium clock reads
15.30, while the clock of player 4 reads, say, 15.25. Since the mean velocity
of the ball has exceeded the mean velocity of player A4, its time dilation will be
larger. So, the clock of the ball will read, say, 15.20. The time dilations are
exaggerated just for convenience. According to the AEST theory the
coordinate difference between two objects is given by
Mh = Iﬁ e I: = (ﬁ}
where p runs from 1 through 4. For the sake of clarity the reader should
recall that the proper-time of the object is taken as the fourth coordinate:
v’ =ct. When player 4 hits the ball we have Ax=x,-x, =0 and
Ay =y, =¥, =0. So, at t = 15.30 the spatial distance between the player and
the ball is zero (as required for a player hitting the ball). However, the four-
dimensional Euclidean distance between them will not be zero:

Asy .y =Ax v Ay +lan? =, —1,)’

(7N

or As_ . = 300cmeters. For the Euclidean distance between two events and
the infinitesimal displacement we have As' = Ax’ +Ay’ +¢’At’ and
ds® = c'dr’ respectively. The latter might suggest thatAs® =c’Ar’is a
possible definition for the distance between two objects. However, it is not. 1f
it were, we would find for the four-dimensional distance between the player
and the ball at the moment the player hits the ball the following:
As = Ar = 15301530 = 0. The latter is in disagreement with expression ( 7).
Therefore, four-dimensional distances in an AEST will always be defined as
follows:

QS} :ﬂxpﬂx" - {3)

where Ar, =6, Ax" with 8 the Euclidean metric & =diag. (1, 1, 1, 1). This

is the canonical definition for four-dimansional distances in an AEST. It is
valid in general for any kind of distance whether it is a four-dimensional
distance between two objects:

As® = Ax" + Ay" + Az" + A (9)

or an infinitesimal displacement of a single object:
ds’ =dv’ +dy’ +dz’ +cldt’ . (10)

In summary, the improper definition ds” =c’di’holds for infinitesimal
intervals of a single object, but not for distances between two objects:

As® # ¢’At’ . The canonical definition ds” = dx dx” holds for infinitesimal

intervals of a single object, see equation ( 10), as well as for distances -
between two objects, see equation ( 9).

1 will show that a similar situation is also present in the TR. To this end we
will consider the TR description of the football match. According to
Minkowski's definition for distances [7], the infinitesimal interval of player 4
is given by

ds’, = dv} +dy’ - cdt’ . (11)
For the infinitesimal interval of the stadium clock this is

dsi =—cldt’ .

(12)
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As is known, in the TR the length of intervals are taken equal to ¢ times the
proper-time lapse. For player 4 this is

—cldt} =dx, +dy), -c'dr’ (13)
and for the stadium clock this is

~cide] =-c'dt’ .

(14)
Since r =71, that is, since the proper-time of the observer is taken as the
fourth coordinate for the object, expression ( 14) is a trivial identity. The
relation ( 13) is mathematically identical to the AEST relation ( 4). However,
conceptually they are completely different. In the AEST theory the proper-
time of player 4 is taken as the fourth coordinate, while the proper-time of the
observer (the stadium clock) is taken as the time parameter. In the TR the
proper-time of the observer (the stadium clock) is taken as the fourth
coordinate , while the proper-time of player A is taken as the time parameter.
As a consequence, in the TR the proper-time of the observer (the stadium
clock) serves simultaneously as the fourth coordinate for all the different
objects, while there are as many parameters as objects. As 1s known, it leads
to problems for the parametrisation of relativistic multibody dynamics as well
“as relativistic quantum theories. For this reason Fock, Tetrode and others tried
o construct single parameter theories. Usually one proposes an additional
evolution parameter independent of the proper-time. For instance, Horwitz
and Piron [8] proposed to use the proper-time of the barycenter of a two body
. system as the evolution parameter. A historical review on this matter has
been given by Fanchi [9]. The necessity of an absolute evolution parameter
for the formulation of quantum gravity has been exposed by Gaioli and
Garcia-Alvarez [10]. It can therefore be seen as an advantage of the AEST
approach that all the objects have distinct values for their fourth coordinate,
while they are parametnised by a single evolution parameter.

Let us proceed with the description of the football match according to the TR.
When the player hits the ball, the spatial distance between them is zero. At
this point the TR is, of course, identical to the AEST. The difference comes
into play when the four-dimensional distance is considered at the very
moment of player 4 hitting ball B. According to the TR it is given by
ﬂjiﬁ,:ﬁx2+ﬂ}'z—€:mi=ﬂ+ﬂ—ﬂ=ﬂ. ‘]5}

The TR relation for the infinitesimal displacement of a single object:
ds’ = -c'dt’, suggests for distances between two objects the following

- 631 -

relation: As® = —¢’At’ . However, for player 4 hitting the ball B the latter
would yield: As, . =ic(t, —1,)=300c(imaginary) meters, in disagreement
with expression ( 15). The inconsistency can be avoided by defining the four-
dimensional distances in the TR as

As™:i= Ax® + Ay' + Az° — ' AL (16)
and certainly not as As’ = —c'At’. As we will see in section 6, this will
completely destroy the concept of a curved spacetime and therefore the
validity of the GTR.
In summary, the improper definition ds’ = —c’dr” is valid (within the
concept of the TR) for infinitesimal displacements of a single object, but not
for distances between objects: As’ # -¢’At’. The alternative definition
ds’ =dx’ +dy’ +dz* - ¢’dr? is valid (if we take the Minkowski metric for
granted for a moment) for infinitesimal intervals of a single object as well as
for distances between two objects, see equation ( 16).
The inconsistency in the TR because of its improper definition for distances is
not new. Phipps already clarified it by explicitly distinguishing between
differential quantities refemng to two worldhines and those referring to one
[11]. The present line of arguments is a popularised version of it. As we saw,
the argument helped us avoiding a similar kind of improper definition for
distances in the AEST.

Opponents to the AEST theory might reply with the following cnticism: “For
the determination of the time coordinate of an event an observer will use his
clock in the same way as he uses his yardstick for the determination of the
spatial coordinates of the same event. So, it is quite natural to take the clock
of the observer as the fourth coordinate of the observed event (or object)”.
Well, it might seem natural but it is not. It is hard to leave this idea since we
are more or less grown up with it. For the time coordinates of events we
always read off the watch in our hands. Suppose an object is at position x,
according to our yardstick while our watch reads ¢,. Also suppose that the
object is at position x, according to our yardstick, while our watch reads &,
Indeed we feel inclined to say that the object has moved a distance

x, = x, in space, while it has moved a ‘distance” ¢(r, —¢,) in time. However,
this is not the case. To this end we note that the clock of the observer
represents the proper-time of the observer. Thus the ‘distance’ ¢(t, —1,) is our
proper-time lapse. What we measure with our watch is just our own fourth
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coordinate. Therefore it cannot also be used as a fourth coordinate for the
observed objects (as unfortunately is the situation in the TR). So, when an
object 1s at position x, when our watch reads ¢, and at x, when our watch
reads f,. we should say that the object has moved a distance x, - x, in space,
while we (the observers) have moved a ‘distance’c(s, —t,)in time.The
misconception would probably not have occured if the proper-ime of the
object would have been apparent to us from the very beginning. In order to
see this, consider the mouse of your personal computer. As soon as you move
the mouse, its new position (x, y)is immediately displayed on the screen of
your computer. It is not hard to imagine a three dimensional mouse. As soon
as you moves such a mouse in space, its new position (x, v, z) will then be
displayed on vour screen. The final thing to do, is to imagine a four-
dimensional mouse. To this end we mount a clock on the mouse of the
computer. In this way the proper-time of your mouse can be read off
electronically and displayed on your screen. As soon as you move the mouse
(very quickly) you will observe that its clock will run slower: time-dilation.
So, now there are four coordinates on your screen: x, y, z, T . In case we had
played with such a toy on high school, we probably would have considered it
as natural to take the proper-time of an object as its fourth coordinate. The
internal clock of your computer (displayed separate from the proper-time of

the mouse) 1s not redundant. It will serve as a parameter in order to keep track
of the successive events.

The objections outlined in this section are not the only ones that can be raised
against Minkowski's implementation. Additional arguments can be found in
my previous papers [2,3]. Some of them will be present in the following
sections. To avoid length, | will not recall all the arguments in the present
paper. Instead I prefer to set up the AEST and look for its consequences.

3. The AEST and its correspondence with the TR.

In this section a four-dimensional AEST will be constructed. A comparison
will be made with the TR. As argued before, the proper-time of the object is
taken as the fourth coordinate of that object. Observed distances will be
measured according to the Euclidean metric:
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ds’ =8, de*dx” | (17
where the summation is understood over repeated indices. The indices run
from 1 through 4, where the fourth coordinate 1s ¢ times the proper-time of the
observed object. An advantage of the AEST theory is that there will be no
difference between covariant and contravanant tensors:

A =4", F" =F" =F, and so on. So, in the sequel of the paper the
Euclidean distance will be expressed as
ds’ = dx_d.x" 4 { ls]

where the summation is understood over repeated indices in the Euclidean
sense.

Now, for a Euclidean spacetime there are a priori two possibilities: either it is
relative (absence of a preferred frame of reference) or it is absolute (presence
of a preferred frame). It can be shown that a relative Euclidean spacetime
bears nonsensical properties, while an absolute Euclidean spacetime does not
[2]. Next to this, there is some experimental evidence for a preferred frame of
reference [12]. Also a consistent description of stellar aberration requires
absolute motions [13,14]. We therefore will restrict ourselves to an absolute
Euclidean spacetime (AEST). The adverb ‘absolute’ should not be seen in the
historical meaning of a spacetime where all the clocks run equally fast.
Instead, with ‘absolute’ is ment that there is a preferred frame of reference. In
the spirit of Mach the preferred frame is thought to be such that the sum of all
the momenta of all the objects in the universe vanishes. A clock at rest with
respect to this absolute rest frame will run fastest. Its time will be referred to
as absolute time and used as the time parameter. A clock moving with respect
to this absolute frame runs slower. Its time will be denoted as t and it will be
used as the fourth coordinate: x, = ct . Because of the relation ( 4), which is

valid in the AEST as well as in the TR, we postulate the following: In the
absence of gravitation all objects move with a four-dimensional Euclidean

velocity equal to the speed of light in a vacuum. This postulate can be
expressed as follows

uu =C . {19}

Again, the (Euclidean) summation is understood over repeated indices.
Explicitely it reads

c=xt+y 42+ (20)
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The dot stands for the derivative with respect to the parameter r. For instance,
u, =ct =cdv/dris the proper-time velocity. The consequence of the
equation ( 19) is that objects moving off from the absolute origin with a
constant velocity, all will reach a three sphere with radius cAr during a lapse
of absolute time Ar. For a clock at rest with respect to the absolute rest frame,
we have T, =T 0. =1 . It will be used as the time parameter.

In order to draw the trajectories of the objects in a four-dimensional AEST, we
clearly need a fifth axis; a parameter axis. This does not mean that the AEST
1s five dimensional. It just is a four-dimensional spacetime extended with a
parameter axis. Since a four-dimensional spacetime is difficult to represent on
.a plane sheet of paper, we will restrict ourselves to a two dimensional
hyperplane. That is, we will restrict ourselves to the x,,x,-plane. The
situation is drawn in Figure 1.

cr

Figure 1. Various objects, 4 through G, moving in a two dimensional
hyperplane for increasing parametervalue.

The parameter ‘axis ct is drawn perpendicular to the x,, x,-plane. After a
simultaneous start in the origin, the simultaneous positions of the objects
constitute a circle, whose radius increases as much as the time parameter. The
result is a cone in a three dimensional diagram. Again, we emphasize that this
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diagram being three dimensional, does not mean that the hyperplane under
consideration is three dimensional. Instead, the diagram represents a two
dimensional hyperplane extended with a parameter axis. If we suppress the
parameter axis, that is, if we take a top view of Figure 1, we obtain the
corresponding AEST diagram, see Figure 2. The AEST diagram shows some
resemblance with the so called space-proper-time representation of Newburgh
and Phipps [15]. In the AEST diagram, objects starting simultaneously in the
origin, all will reach a circle with radius cdr during a lapse of parameter time
dr. They should since they obey the equation ( 20). So, the paths in the AEST
diagram always reflects the fundamental relation

tﬂ? =d.1': +dy1+d'z}+c3d‘l:: . [11}
The circle in the AEST diagram in Figure 2 is a line of simultaneous
endpoints of the infinitesimal trajectories of particles who moved off
simultaneously (at 1 = 0, say) from the origin. As a consequence, the relation
between spatial velocity and proper-time velocity will be of goniometrical
nature. As we will see, the latter allows for a simple calculation of the
‘relativistic’ factor.

The calculation of the velocities in the AEST is a matter of projecting the
four-dimensional velocities on the space axes and the proper-time axis. For
the object B we have for its spatial velocity v, = ccose and for its proper-

time vwvelocity cdt, /dt=csinp. It immediately follows that

dt, /dr = 1-cos’ ¢ .Inserting cosp = v, / ¢, we obtain

de, =diiy, , (22)
where v, =(1-v; /¢®)". This result is well-known from the theory of
relativity. The goniometrical nature of the factor y becomes very transparent
in the present approach. The object C is an object at rest in the origin of the
absolute rest frame. For it we have v. = 0 and d,. = dr . The object D moves
in the negative x-direcion, while its proper-time runs forward:
vy, <0, dt, =dr /y,. The object £ is a photon moving in the negative x-
direction: v, = —¢, dt, = 0. The particle GG is moving in the negative proper-
time direction: dt, = —dr [y;. If one likes, the reversed proper-time can be
conceived as if the hands of the ‘internal clock’ of particle G are rotating
counterclockwise. According to the AEST theory a backwards running
proper-time means that the particle behaves in an opposite way. Alternatively,
if particle B and particle G have opposite properties, then particle G can be
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regarded as an antiparticle. Particle F moves in the negative x-direction and in
the negative proper-time direction. So, it also is an antiparticle. The object A,
finally, is a photon moving in the positive x-direction. Although it makes less

sense, one can also suppress the proper-time axis instead of the parameter
axis.

E cdt ?

Figure 2. The AEST diagram for the objects A through G.

Suppressing the proper-time axis, that is, taking a front view of Figure 1, we
obtain the Minkowski diagram, see Figure 3. We see that the Minkowski
diagram actually is a space diagram extended with a parameter axis. If one
regards (erroneously) the time parameter as the simultaneous fourth
coordinate for all the objects, the Minkowski diagram can easily be taken fora
space-time diagram. Unfortunately, this is exactly what has happened in the
TR. The present approach makes clear that the Minkowski diagram actually is
a space diagram extended with the parameter axis. The projection of the full
diagram in Figure 1 to the diagram in Figure 3 illuminates why there is a
lightcone in the Minkowski diagram and a gap outside the lightcone. It also
illuminates that the trajectories of objects moving in the AEST at an angle ¢

and -¢ respectively, are mapped on the same trajectory in the Minkowski
dragram. The points of the circle in the AEST diagram all have the same value

<37 =
for the time parameter. Since the value of the time parameter is mistaken as

the simultaneous value of the fourth coordinate of the objects, these points lie
on a horizontal line in the Minkowski diagram.

cl

x
Figure 3. The Minkowski diagram for the objects 4 through G.

As a consequence, in the TR the four-dimensional distances always are purely
spatial. At first instance this might seem natural. However, it is not. Giving it
a little thought it is in fact quite odd. Simultaneity is indissolubly connected
with the time ordering of events. It is the time parameter which should
determine simultaneity and not the fourth coordinate. Imagine, for instance,
two four-dimensional mice electronically connected to a computer screen. If
we move the mice with differents speeds, we will not be surpnised if different
values for the time coordinates simultaneously appear on the screen of our
computer. Moreover, it even is required by a realistic time dilation.

In summary, for a canonical spacetime model with four coordinates and one
parameter, one should expect the values for all the four coordinates to differ
from one object and another, not just for the three spatial coordinates as in the
TR. One also should expect that the motion of all the objects can be
parametrised by one single parameter, not by infinitely many parameters as in
the TR. The AEST theory does satisfy these logical requirements, while the
TR clearly does not.
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So far, we have just considered velocities with respect to the absolute rest
frame. Now we will briefly consider velocities with respect to a moving
observer. Without loss of generality we let the observer move with a constant
speed v, in the positive x-direction. The Michelson and Morley experiment
[16] can be explained in an AEST if one assumes a physical length
contraction, as shown by Lorentz [17]. At this point the AEST is similar to the
TR, except that there is no doubt about the physical reality of the length
contraction [2]. Because of this length contraction the yardstick of the moving
observer O will shrink with a factor y, = (1-v; /¢*)"?. As a consequence
the infinitesimal change of a measured distance looks larger by the same
factor than its Galilean value dx, —dx,, . Thus

dxm‘;TD{dxd-itﬂ) ¥ {23)

where the subscripts 4 and O identify the object 4 and the observer O
respectively.
Since the clock of the moving observer runs slower than a clock at rest, we
have for the proper-time ¢, =t of the observer: dr, =dt/y,. Now, the
Einstein synchronization procedure [18] for to-and-fro light speed
experiments hinges on a circular reasoning. To be specific, the
synchronization of clocks is based on the assumption of the invariance of the
speed of light, while the invariance of the speed of light hinges on the
synchronization of the clocks. If one applies the Einstein synchronization
procedure to the AEST, that is, if one lets the observer synchronize his clocks
such that he obtains in a to-and-fro experiment the same value for the speed of
light, then the moving observer will measure a slightly different value for an
infinitesimal time lapse [2] :

dl ., =dt—yo(dx, —dx,)v, I’ .

24
The expressions ( 23) and ( 24) can be elaborated to i3
dx_. =T(¢x, —"T”cd:] (25)

and
d,,,, =T[cdr-1j-dx,], (26)

respectively. We recognize them as the Lorentz transformation. However, the
AEST approach makes clear that the transformation ( 26) actually is a
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parameter transformation and not a coordinate transformation. The
transformation of the fourth coordinate of object 4 15

dat. =dt (27)
That is, the proper-time of an object is invariant; it is the same for every
observer. Since the application of the Einstein synchronisation procedure
leads to the Lorentz transformation, it also leads to Einstein's addition
theorem for velocities. In fact, the STR is completely recovered in this way
[2]. It should be emphasized that this does not mean that spacetime is relative
after all. The seeming relativity is not a consequence of the structure of
spacetime as it is believed to be in the TR. On the contrary, it is an artificial
consequence of the way we conduct measurements, Without the
synchronization, it would be obvious that spacetime is absolute and
Euclidean. Since physics will not reckon with the artificial way we conduct
measurements, one expects that the predictions following from the AEST
theory will diverge from the predictions following from the TR. Remarkably
enough this does not happen to be the case. It turns out that the two distinct
theories lead to predictions which are similar to a high extent. Examples of
such similarities will be given in the next sections.

4. Proper-time mechanics

In this section a semi-classical explanation will be given for Compton
scattering and pair annihilation. Before we start the analysis it has to be
mentioned that in the AEST theory mass is taken to be independent of
velocity. It has been shown that in the AEST theory the concept of a velocity-
independent mass does not run into conflict with accelerator expeniments [19].
As also stressed by Strel'tsov [20], the TR is ambiguous at this point: scalars
should be invariant. while mass is an exception to this rule. For the same
reason the presence of mass in the Lagrangians is troublesome in the TR. As
will be shown in this section, a fully consistent mechanics can be based on
invariant masses. For a start we will consider the AEST Lagrangian for a free
object:

L=mupu" : (28)

In the AEST the Euler-Lagrange equations of motion read [21]
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oLléx"=d|dtoL/ou" . {zg}
The total energy of the object follows from

E=u"dL/0u" - L=mu"u,, (30)

and is a constant of motion: E = 0. By means of the AEST postulate ( 19), the
total energy is also given by

E=mc".

(31)

Since mass is a constant of motion in the AEST theory, the value we take for
m 1s the same as what is called rest mass in the TR. In the AEST theory it
does not make sense to speak about a rest mass since mass is independent of

velocity. Applying the Euler-Lagrange equations to the free Lagrangian, we
obtain

mu, =p, .,

(32)
where each momentum p, is a constant of motion: p, = 0. In the sequel of
the paper a profound role will be played by the proper-time momentum p, .

Since this section is aboul collisions, we have to consider more than one
object. In order to distinguish the different objects we clearly need an
identifier. Therefore, the momentum of an object will be denoted as p,

where the 7 identifies the object. For instance, the momentum p,, is the
momentum in the z-direction of the seventh particle. If there are initially »

particles, the total momentum before the collision amounts to z p., - If there
i=l
are N particles after the collision, the final total momentum amounts to
N
Z F. . The quantities after the collision will be written as capitals just in

order to avoid the use of primes. As in classical mechanics, we require that the
total momentum in each direction has to be conserved:

>pu=XP, . (33)

=1

Also, the total energy has to be conserved:

im,r_‘l = i M. (34)
=l =]
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Dividing both sides by the square of the speed of light, we can also refer to it
as the conservation of total mass:
i N
Zm- = Z M, . (35)
=] i=l ¥
During the collision process we will allow a change of the number of particles

as well as of the mass of each particle as long as the total mass is conserved.
Of special interest will be the conservation of proper-time momentum:

imnﬂc! —v: =iMF.1,Jc’ N (36)

i=] f=l
For a classical collision the number of particles and the mass of each particle
will not change during the collision process. The velocities of the objects will
be small compared to the speed of light. With the substitution of
n=N, m =M, v, <<e and V, <<¢, equation ( 36) reduces to second
order in

imic{]—b’w‘i :’cz)zimfc(l-’;’;l’,.‘ /e*) (37
il i=l

or simply
Z’fzmjvf = Z’;’:mrl’ll : (38

=l i=]

We conclude that in the classical limit the conservation of proper-time
momentum reduces to the conservation of kinetic energy. From the AEST
point of view it is better to speak of conservation of proper-time momentum.
By means of the system of equations ( 33) and ( 35) an AEST analysis of a
classical collision between , say, two billiard balls can be performed [22]. The
results are in agreement with classical kinematics. In the next subsections we
will consider collisions between elementary particles.

4.1 Compton scattering

As mentioned before, for nonclassical collision the number of particles and
the mass of each particle may change during the collision process. For
nonclassical collisions the AEST concept of mass invariance allows to ascribe
a mass to a neutrino and a photon as follows: m= hf /c’, where f is the

frequency of oscillation in an internal dimension. The internal frequency can
change during a collision. For instance, when a photon is scattered against a
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free electron its frequency will decrease. This is known as the Compton effect.
From the AEST point of view this means that the mass of the photon has
decreased. Since the total mass has to be conserved this implies that the mass
of the electron has increased during the collision. With these considerations in
mind a semiclassical explanation can be given for the Compton effect. The
experiment is as follows. A photon with frequency f is incident on a free
electron at rest, see Figure 4. On collision the photon is scattered at an angle
8 , while the electron moves off at an angle ¢ with velocity V.

photon electron 6
-0 »

Before collision After collision

Figure 4. Compton scattering. After the collision the electron moves off
with a-speed ¥, at an angle ¢ . The photon moves off at an

angle 0.

According to the equations ( 33) the conservation of momentum in the x, y
and 1 -direction read for this collision

mc= MTCCDSB i M'V‘_ CosQ {39}
0= M csin® - MV sing , (40)
and
me=M,Jc -V}, (41)
respectively. For the conservation of mass we have
m+m =M +M_. (42)
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The subscripts y and e identify the photon and the clectron respectively.

Eliminating the final mass of the electron, we obtain
m M (1-cosB)=m(m - M) . (43)
Substituting m = h/ck and M, =h/c)’, we obtain for the Compton shift:

A =k=Qk (1-cos0), ( 44)

where &__ = h/cm, is the Compton wavelength for the electron. We see that

the AEST prediction and the TR prediction for the Compton shift are identical
[23]. This is a remarkable result since the conservation laws read entirely
different in the TR. Such a remarkable agreement also occurs for the
annihilation of an electron-positron pair. As we will see in the next
subsection, the AEST explanation of pair annihilation is far more close to our
notion of reality.

4.2 Pair annihilation

When an electron and a positron annihilate, two photons emerge. In case the
electron and the positron are moving at the moment of annihilation, the
wavelengths of the emerging photons will be shifted. By means of the system
of equations ( 33) and ( 35) we will offer the AEST explanation for it. To this
end we consider an electron and a positron both moving with a velocity v in
the x-direction. Afier the annihilation two photons will move off in opposite
directions, see Figure 5.

positron
v photon photon
e =
i (i
electron

Before annihilation After annihilation

Figure 5, The annihilation of an electron and a positron. After the
annihilation two photons emerge in opposite directions.

The conservation of momentum in the x- and t -direction read
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my+myv = M,Fc'— Mr-c (45)

and '
mAe =V -m#'\llcl -vi =0, . ( 46)

respectively. The conservation of mass reads
ml‘+mP=Mr+M1— : (47)

In these equations e and p identify the electron and the posﬂmnhTh: su:s::ilfé
v (7 ) identifies the photon which moves off to the n_ghl_ (le )..‘ negat
sign is taken for the proper-time of the positron. This 1s lcgmmal-c snl'lca
u. = —aJci =y’ also is a solution of equation ( 19). The minus sign just
n:l.‘:ans that the proper-time of the positron is running ‘b_;mkwa;ﬂs. ttz
mentioned before, it is the opposite sign of Proper-hmc which rg stgct
hehaviour of the positron opposite to t_he behaviour of the electron. 50, mamj-
the negative sign 1s required since it means that the positron 1s an o
clectron. From equation ( 46) it follows that m; mass of the elactr;r_i is eq

to the mass of the positron. The other two equations then lead to [22]:

M. =m.(1+v/¢) (48)

and M; =mr(_1-\"|"{']. tqg)

By means of the relations A = h/eM, and h=h! cM.. the latter equations

can also be written as "
A=A Il(1+vic) ( 50)

and #
k=, f(1=v/e), (51)

respectively, where A, = h/ em_ is the Compton wavelength for the electron,

i -posi ir is equal to zero, the
[n case the velocity of the clectron-positron pair is €
':'a.velength of the emerging photons will hc_,th be c:qua? 1o the Ccimpu;ln
wavelength for electron. For the nonzero velocity of the pair, the wave engt css
clearly are shifted. The expressions ( 50) and ( 51) are identical to the on
found with the TR [24]. For the ratio of the wavelengths we find

ik =(c=v)/(c+V) . (52)
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We see that the ratio of the wavelengths only depends on the velocity of the
pair. This expression for the ratio of the wavelengths holds for any particle-
antiparticle annihilation. In order to give a clear exposition of the conceptual
difference between the AEST theory and the TR, we will consider the
following cases; 1) both the observer and the pair are at rest with respect to
the absolute rest frame, 2) the observer is at rest with respect to the absolute
rest frame while the pair is moving with a velocity v in the right (this is just
the situation considered above), 3) the pair and the observer both are moving
with velocity v to the right (that is, the observer is co-moving with the pair)

and 4) the pair is at rest with respect ot the absolute rest frame while the
observer is moving to the lefi.

Case 1. According to both the AEST theory and the TR there will be no shift:
Ik =1.

Case 2. According 1o both the AEST theory and the TR the wavelengths will
be shifted as given by the expression ( 52).

Case 3. In the TR this case is identical to case 1. So, according to the TR the
wavelengths will not be shified. According to the AEST theory the
wavelengths will be shifted as given by the expression ( 52). That is, they
really are shified in the sense that there are two different frequencies
generated. We will refer to it as the ‘real’ shifi. However, the measured values
for the wavelengths will also be Doppler shifted for an observer which is
moving with respect to the absolute rest frame:

[5] _[c+v][£] Vi
A m’_ e=v/\ mr‘

For the derivation of the Doppler shift for a moving observer in an AEST we
start considering the ‘Galilean’ expressions for the shift: & = (1+v/)k,,
and & =(1-v/¢)h,, ,where v is the velocity of the observer (towards the

right). The latter expressions are too naive since the length contraction of the
yardstick of the observer will make that the observed wavelength looks larger
with a factor v =(1=v /¢’)". As a consequence the expression for the
observed wavelengths become

- I (1-v/c) U, T (54)

i 'II]—V-!.I'I-CI l"“'f c+vl‘mﬂ

and



g (leuie) =i fed¥ve o (55)

— — =
o, L

1-v e e~
i i i ins the expression ( 33).
m these expressions one immediately abtm_ns t m
g:::stituiion of the expression ( 52) for the ratio of the real shift in t‘r_'ue
expression ( 53) leads to (f { f}m =1. Obviously, the Doppler shift
i i fore we do not measure a shift for
recisely compensates the real shift. There! 1
]t}he wavelengths. So, both the AEST theory and the TR predict the same result
in this case. ) ;
:‘gase.- 4. According to the TR there is no difference with case 2. Therefore lgl;
“chift will be given by the expression ( 52) in the TR. According to the .f\Eth
theory the wavelengths will not be shifted since the pair is at rest in the
absolute rest frame. That is, there is no ‘real’ shift: (A /A ), :.l' However,
the measured values for the wavelengths will be Doppler sh:ﬂn?d for the
moving observer. Therefore the measured value for the ratio of the
wavelengths will be

x [c-—v][?;} JeRy ke
Lf “lewv/la) | etv

The latter is identical to the TR pre:dictinnlt 52). So, in all cases both thennr:‘s
predict the same result. The conceptual differences become very trfxgs;:larmi )

In the AEST theory it always is clear whether the shift is a real shi ﬂ(h uethﬂ
the motion of the pair with respect to the absolute rest frame_] or whether 1e
shift is a Doppler shift (due to the Doppler effect for the moving ol:-_setr:kcr]. n
the TR the shift is a real shift if the inertial frame of thclnbserver is taken asl
the frame of reference, while the shift is a Doppler shift when th'tE f:nc;t-:la

frame of the pair is taken as the frame of reference. In the TR the s;mf partly
is a real shift and partly a Doppler shiﬂ.ﬁ?r every qiher frame of reference.
Elementary logic prescribes that an annihilating pair can generate just c_r:;
single value for the real shift. The AEST theory thers,tfme isin ag;remnen;:_u :
our inner sense of logic. According to the TR the pair has to be able 10 j;;
simultaneously the amount of real shift to all the -::'llffe_rent {JbEEI'V_El“S. The 4

therefore runs into conflict with our inner sense of logic. Alternatiy ely, at this
point the TR is paradoxal, while the AEST theory clearly 1s not.
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5. Proper-time gravitational dynamics

In this section we will present a new model for gravitation in a flat AEST.
Before we investigate the consequences of the new gravitational dynamics, we

first will offer two decisive arguments against the GTR. To this end we start
considering the Schwarzschild solution as it is found in the GTR;

cdel =(1-2p/r)c’d’ ~(1=2u/r)"dr’ ~r'de’ ~ ' sin’ @dd’ gy

Firstly, as we saw in Section 2, Minkowski’s definition for distances is
inconsistent. So, it is not allowed to substitute ds’ = ~¢’dt? in the expression
above, As a consequence the coefficients (1-2p/r) and (1-2p/r)"
cannot be interpreted as the components of a metrical tensor. Since Einstein’s
derivation of the Schwarzschild solution is entirely based on the concept of a
curved spacetime, we have to draw the conclusion that the GTR is ill-founded.
Secondly, it 1s easy to show that expression ( 57) is already inconsistent itself
[4]. Let us start by assuming that the coefficients are additive (we prefer to
speak of coefficients rather than metrical components since we want to show
that spacetime is flat) . Since the Schwarzschild solution holds for every
sphencally symmetric source mass, it also should hold for every sphencal part
of it. For convenience we will denote a small spherical part as an ‘atom’.
Adding the potentials of all the atoms which constitute the bigger sphere, we

arrive at the correct expression for the coefficient guiding the dr” :

N
g, =1=-22 pu/r=1=-2ulr, (58)

i=]
where N is the number of *atoms’, r, is the distance between the i-th atom and
the object, and p, = Gm, /c*, with m, the mass of the i-th atom [4]. However,
the addition of potentials does not lead to the correct expression for the
coefficient guiding the dr” since each atom also will partly contribute to the
coefficient guiding the r’dp’. As a consequence, the addition leads to

g, <(1-2p/r)" and g, >0 for the bigger sphere. The latter clearly is

wrong. Because of the deviation one may feel inclined to reject the procedure
of the addition of potentials. Also, the nonlineanty of the Einstein equations
suggests the addition of potentials to be invalid. However, if it is not allowed
to add potentials then either the coefficient g, =1-2p, /r. for the spherical

atom or the coefficient g, =1-2u /r for the bigger sphere has to be wrong.
But that also is not possible: neither of them is allowed to differ from the
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Schwarzschild solution since both represent the g, for a spherical source.
Clearly a ‘reductio ad absurdum’ is established. This completes the proof of
the other flaw in the GTR.

In the foregoing analysis the inconsistency of the GTR is shown in l‘w{; \;ays.
For a consistent AEST altemative of the Schwarzschild s::_rlunnn it follows
from some first principles that the coefficients have to be diagonal, isotropic
and exponential [4]. In spherical coordinates 1t reads

di? = e tdet + et (dr’ +ride’ +risin’ 9 db’). (59)

The corresponding Lagrangian for gravitational dynamics in an AEST is
given by e )
L= m[e"*"{u_‘}" +e"" (F+r’e’ +risin’ o Q }] : ( 60)

where ® =@ and Q=0 . Indeed, the application of equation ( 30) to ‘this
Lagrangian immediately gives equation ( 59}. The Euler-Lagrange equations
( 29) lead, after transformation to polar coordinates, of course, to

r’f:rjm:+2p(k2—r2{:11)-|.1e"‘“”[u;]? , (61)
e mrie = A (62)

and y
e 'mu, =8B, ( 63)

respectively, where 4 and B are constants of motion: A =0, B =0. _ln the
remainder of this section we will restrict ourselves to motions n the
0 = 0 plane. For such motions equation ( 59) can be writien as

e ™ (u,) =e e -kt -rlo’. (64)

The set of equations ( 61) through ( 63) Cﬂmplflﬂl?«' detminc the evr:l%ulmn I:f
the three coordinates r, ¢ and t . Equation ( 64) is not independent; 1t can be
derived from the other three equations ufrpqlinn, Usu_ally, one ﬁfx]ucﬂ]nﬂy ;Ds:s
equation ( 64) for practical purposes. Exphmlt c:_a,lculatmns show l}'la_.t e ;]ig]:i
set of equations do lead to the correct predictions for the df:ﬂcf:-tlﬂ:ﬂ ﬂl. -
and the precession of the perihelia of planets [4]. Also, the gravitationa
dilation and the gravitational red shift are the same as in the GTR.
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In the weak field (p << r ) and low velocity ( v << ¢ ) approximations,
equation ( 61) reduces to Newton’s law:
r2F=r3ﬁJ"'—GM. {&5]

To zero order equation ( 62) reduces to Kepler’s law: m o = constant. From
the full equation ( 62) we see that the angular momentum will, in general, not
be conserved. For strong gravitational fields the conservation of angular
momentum might even be heavily violated. In general, the angular momentum
will be reduced by a local gravitational factor. We will therefore refer to
equation ( 62) as the conservation of the ‘locally reduced’ angular momentum.
Of special interest is the conservation law ( 63). Taking its square and
substituting equation ( 64), we obtain

Ezw’ﬂ'l Ht E.’wh{kz +r’m2] = Bi J’mz . (66]
In the weak field and low velocity approximations it reduces to

2me’plr-m? = B im-me’,

(67)

where vi= k" +r'w’. Since B, ¢ and m are constants, equation ( 67) can also
be written as

Yamv' —GMm/r=5% . (68)
~where L is a constant of motion. We will write the classical total energy as &
in order to avoid confusion with the AEST total energy E as in equation ( 30).
Equation ( 68) is commonly known as the conservation of the sum of the
kinetical and potential energy. From the AEST point of view it is better to

regard equation ( 63) as the conservation of the ‘locally reduced’ proper-time
momentum.

The weak field and high velocity approximation leads to the correct parabolic
and hyperbolic trajectories [25]. Also, for the limit v = ¢ one arrives at the
correct prediction for the trajectory of a (massive) photon.

The gravitational dynamics for a nonsingular Schwarzschild solution also has
been investigated by Jeffries [26]. On the basis of the natural requirement of
nonzero densities Jeffries proposes the following:

cldr? = e eldgr? - ot (gp? +ride’ +risin’ g d0?). (69)
The latter expression is independently proposed by Huang [27]. The latter can
simply be rearranged to the AEST equation ( 59). So, they are mathematical
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equivalent, and they will therefore lead to the same predictions. Conceptually
there is an enormous difference since coefficients in the AEST equation ( 59)
will not be interpreted as metrical components. That is, we will not make use
of the inconsistent definition ds? = c'di® . 1f we did, we would introduce the
same kind of error as in the GTR. Instead, we will make use of the consistent
definition for distances

ds? =cldi? +dr’ +r7do’ +risin‘pdd’ . (70)

For the sake of clarity we consider the following two cases.

Case 1. An object at rest in the vicinity of a source mass. For this object
equation ( 59) reduces to dv = e *"dt, while equation ( 70) reduces to
ds = cdv . This can be interpreted as follows. Due 1o the presence of a
gravitational field, the clock of the object runs slower than the clock of an
observer (which can be thought to be far away from the gravitational field) at
rest with respect to the absolute rest frame. The four-dimensional distance the
object has travelled during the time lapse dt amounts (0 ds=e " edt.
Altematively, the four-dimensional AEST velocity for an object in the
vicinity of a source mass is given by §=c/e"". This is precisely what one
expects from a gravitational field.

(ase 2. A photon in the vicinity of a source mass. As in free space, the clock
of the photon will not run (zero proper-time). So, equations ( 59) and ( 70)
reduce to v=c/e™" and s=V respectively. Clearly, the photon moves
slower than a photon in free space. This also is precisely what one expects
. from a gravitational field. There is nothing more to it. A curvature is not at all
needed. Another advantage of the present model is that the velocity of the
photon can be writtenas v=¢/n, , where n, =" is the gravitational index
of refraction. In this way the deflection of light can also be calculated by
means of Snell’s law [28]. Snell’s law is based on Fermat's principle which

states that the path of a photon minimizes the action § e ]d: . The latter only

makes sense if 7 is taken as the parameter precisely as in the AEST theory. It
does not make sense if the proper-time of the photon (which is zero anyway)
is taken as the parameter. At this point the TR runs into conflict with the
principle of Fermat, while the AEST theory does not.

For the strong field situation one has to consider the full equations ( 61)
through ( 63). By means of equation ( 64), equation ( 61) can be elaborated to
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PE=(r-pre’ +3pk’ e GM .
Th - - . b { Tl}
e derivative of equation ( 62) with respect to the time parameter  gives
(2r—-4p)yro + 7w =0 . :
Ne ial veloci F it .
vel};::i:ﬁ ;:f_ ?:ldlald velocity k=7 it is convenient to define the rotational
y as follows: wi=ro . Thezl1, the complete set of equations becomes

w=rp |
w=—(r-4)wk/r®,
_ AL
k= [31.1&3 +(r=p)w’ —e""""GM‘}! e (73)

Together with the initial conditions @(0) = ¢, and r(0) = r, , the autono
= mous

system ( 73) completely determi :
and ¢ of an object. / ines the evolution of the polar coordinates r

For circular orbits it follows that k =0, k=0, w=0 , while

-2 ufr
w=e " [GM /(r-p) . (74)
h l:ﬁf::a;g;n;u?‘;ar:ju; I_It:s:-] rr:he radius lof a pure circular orbit is found by
rotational velocity. The maximum [
rotational

w._ ="+ The mini i
e mumimum value for the radius of the circular orbit is then

easily found to be r =2 .
min — <H - For large radii b

( 74) reduces to the classical result w= [GM /r
For pure radial trajectories it follows that w=0, w =0 and
k=QCuk’-e*"GM)/r? .
i1'-_'c:r a phclcl:-u radially falling towards the center of the source mass we obtai
rom equation ( 64): k, =" ituti e
ke ¢ . The substitution of i i
WL n of the latter in equation
K e =2 M GM (P
| ( 76)
In the weak field region this would have been k.., = 2GM /r*, Clearly th
h ' 7 e :
Eﬂsé?:r;n_:celef‘aies wl!en it fgl!s down to the center of gravitation. In fact, th
ion 1s required since the speed of a radially faII-ing ph:::to:
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continuously reduces because of the gravitational inde:x; an rcfrg:;tmn, Zﬁzd,
\ | ity k =g "¢ with 1€
the derivative of the radial photon velocity k.., =€ sp

to the deceleration { 76). . . ;
?-'l:ru l:a?-:d?aliy falling low-speed object, the equation ( 73) reduces to

imati is 1 ] to the
' AR ? k field approximation this is equa
k=-e""GM /r’. In the wea | : t
classical result & = ~GM [ r*. In summary, low-speed objects ?:; ?;t;‘gf;:; b;
lhﬁ. center while high-speed objects are repelled. The turning po
imposing the condition k=0 to the equation ( 75). The result 1s
’ =TI (17

. s N g Kk
In the weak field region the turming pdo_mit is lat j :; —ag ; f{}. 533‘:-‘ ::I:h;w\:'ﬁ ;
i j i ith a radial veloci 58¢
field region objects moving Wi ity al g
itati 1d. However, a situation wit = |
least from the gravitational fie : . T
last, since the derivative of equation ( 7 \\tsth respect to f lfi:;iso;_omi}:gﬁ
Allématively the radial motion causes thc.ohjact to enter a reg
gravitation, As a consequence the object will decelerate.

In general, the system ( 73) will lead to various Enmrqsttngt}n;?zn:f r:?“?;é
especially n the strong field region. IFurthf:rd Evzsc ;gc v A
consequences of the dynamical sytsaenn{ 73)is bcgpn ; al_ksp

paper. We will end this section with snn:; .:Gi?::uﬁl:i n:,h : précgssim} <
Fi?%;] ?f 211} ‘ Iga?;;:a.ltéo?hai ﬁ;iﬂﬁé of ;:Ehomns, can be given a c:}nsisifﬁé
peniafw.:tlion Fi'n a flat AEST. It also leat_is to the t:_orreci v;l;;;Tﬁ::;Ode!
eg::vitalional time dilation and the gravitational red-shift. The

a lot of advantages: _ ; .
1;Mi;hez gravitational dynamics 15 understood in a flat spacetime, no curvature

e = o
% 4 u

H,
i i i here
coefficients in the Lagrangian ( 60) will be exp[uzr]. wher

=1 I
M W 1 W QOUTC c
L & i'lf"1 and where r is the distance hetween the source M: and th
it i

e o 1 ] E
object. The numenical constant a s equal to 2 and 4 for the ime :snd ;3?:3
coefficients respectively. For each kind o_f SOUTCE Mass lhq:I mfa po e
Lagrangian can therefore easily be determined. In the GTR the Lagran
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corresponding lo arbitrary configuration of gravitational sources are, in
general, hard to determine (if not impossible).

B the velocity-independent mass is present in the Lagrangian without any
trouble. In the GTR one is forced to leave the velocity dependent mass out
of the Lagrangian. In the GTR the equation for the total energy has to be
multiplied afterwards with the mass in order to obtain the correct
dimension for the energy. However, for relativistic electrodynamics the
velocity dependent mass cannot be left out of the Lagrangian. As we will
see In the next section, it will completely destroy the validity of relativistic
electrodynamics.

B a mass can be ascribed to the photon and the neutrino since mass is
velocity-independent in the AEST theory. In the TR this is impossible
since it would lead to infinite masses for objects moving with the speed of
light.

B the path of a photon is in agreement with the principle of Fermat,

M the path of a photon is the same as in the GTR. So, phenomena like
gravitational lensing is also present in the AEST theory.

M since the AEST is free of singularities, it excludes the existence of black
holes, Einstein-Rosen bridges, wormholes, Hawking radiation and so on.
Nevertheless, dark massive regions still can exist in the AEST. For this it 1s
sufficient to note that the velocity of a photon is extremely reduced when
radiated from a heavy source. As a consequence, these photons still might

have not reached the earth. Photons radiated from less heavy neighbour
sources might already have reached us. The latter ones may show high red-
shifts indicating the presence of an ‘invisible’ heavy source mass. If we
could bring ourselves to be patient, we will experience that the
‘invisible’source sooner or later starts to shine.

The most fundamental conclusion is that the nature of the metric cannot be a
consequence of the Lagrangian, not even if it is of the type L = g, u"u" . The

subsequent equations of motion say nothing about the metric. They are just
equations of motion. The Lagrangian is invented as a mathematical technique
in order to determine the evolution of the coordinates of the objects. In order
to know what these coordinates represent, the metric has to be defined before
the Lagrangian is constructed. Shortly, the metric cannot be an a posteriori
result of the Lagrangian. The metric has to be defined a priori in a canonical
and consistent way, precisely as we did in the AEST theory. In the GTR it is
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the use of an inconsistent definition for distances which has led to the
misconception of a curved spacetime.

6. Proper-time electrodynamics

In analogy with classical dynamics the four-aceeleration and the four-force in
an AEST will be defined as
ai=u"=x" {?8}

and
K%:=p' sma’ , (79)
respectively. Remember, the dot stands for the derivative with respect to the
time parameter. In the TR the dynamics is covered by the Lorentz group. The
AEST, however, is covered by the much more simple group SO(4) [19]. The
elements (M, )., OF simply M, . of the infinitesimal generators M of
the group SO(4) are given by
; M e =88, =88, (80)
where 8 =1 if p=c and zero otherwise. From the latter expression one
can easily derive the identities
M. .. =—M M, .=—M M..=M

pvpa vppa * WV prop 2 pvpa pouv { 1}
as well as the AEST analogue of the Lorentz algebra
(M Mo ] =8, Moy —8 Mo ~8 M,y 48, M, - (82)

As known, the elements of the Lie group SO(4) can be wﬁllten in an
exponential form. A change in the four-velocity can therefore be written as

a, =Y0" M0 =wo, . (83)
For the four-force we then obtain
Kn T mu"mw : ( 84)

The AEST Lagrangian for elecrodynamics reads
= mupu" +2|‘.IA"H“ i { 85)
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where g is the electromagnetic charge of the object and where A4, is the

electromagnetic potential field as felt by the object. Note that the mass m can
be present in the Lagrangian without any trouble. In the TR this is not
possible since the Euler-lagrange equations of motion would lead to
disturbing terms containing the derivative of m with respect to the velocity v
of the object. In the AEST theory mass is independent of velocity. So,
disturbing derivatives of the mass do not occur. The Lagrangian ( 85) is such
that equation ( 31) automatically is preserved. Indeed, for the Lagrangian ( 85)
equation ( 30) gives

E=muu" =mc. (86)

Equation ( 29) leads to the following Euler-Lagrange equations of motion:
Ku =qu"'(aua‘1’\. ‘—a\_z‘i“). (BT}

The partial derivatives are with respect to the coordinates of the object.
Thus,d =8/8x' and 8, =c¢'9/8t =(u,)"'8/8¢t. In analogy to what is

done in relativistic electrodynamics [29], an antisymmetrical tensor £ will be
defined as follows:

Fvu :au‘{v“a\,-’dp . ( 88)

The four-force then reads

Ky =q'by (89)

Comparison with equation ( 84) tells that the angular velocities w  of the
object are caused by the tensor field F, as they are felt by the object. With

the additional defimitions
f:l.:= _.(.f:rd ¥ F;-l = _Er II‘C

(90)
for the electrical field, and
B,i=-%e, F" o F, =g, B*, (91)
for the magnetic field, the four-force takes the form
K,=—qu'E,le, (92)

K, =q(uE, lc+e u'B') , fash
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where € is the Levi-Civita tensor. The role of the Pmpcr—time velocity clearly
comes into play. In vector notation the latter equation reads

K=Q(EH+§>=§), (94)

It differs in a subtle way from the conveminn?l Lorentz force.- The reason for
this is obvious. In the TR the time parameter 15 taken as the fourth courqmai:e
of the object. Therefore the ‘velocity of time’ will a}wa}fs be equal to ¢ }n t ;
TR. In the AEST theory the proper-time of tht: object is taken as the fourt

coordinate. Therefore the proper-time velocity will be equal to ¢/y . The

consequences will be substantial. In order to illuminate 1h1ese, we consider ,?
charged particle subject to a linear acceleration in an electric field. The AES

analogue of the Lorentz force then reduces to mii = gE |y . According to the

TR we would have myyd= gE . Mathematically the two expressions are
identical. The acceleration decreases for increasing velocity at the same rate
for both theories. Conceptually, however, they are cnmpleltcly dlffﬂl‘ﬁi:..
According to the TR the decrease of acceleration is due to the increase of the
mass. In the AEST mass is, as any other scalar, a constant of motion. i_n ﬁ'lﬂf
AEST the decrease of the acceleration is due to gde{:rcase .Of the sensitivity ©
the object to the electric field. The sensitivity is proportional to the ;_Jr{:-pc?‘-i
time velocity. In particular, a particle with reversed ;_umper-ttmi:a vc}olmly wil
respond oppositely; as an antiparticle. The proper-time \-'Flumt}r ngh'l als\ul
have consequences for Coulomb’s law. In classical dynamics Coulomb’s law
reads

K= % (95)

ame,r’

where r is the distance between the charges Q and g. A-::cn_rdmg to _the AEST
theory the sensitivity of charge ¢ 10 fields will be proportional to 1ts proper-
time velocity u, . It can be argued that the intensity of the field caused by the
charge O also is proportional 10 its proper-time velocity U, [19]. Ca_pitais are
used in order to avoid the use of identifiers for the different objects. So,
according to the AEST theory the electric force between two charges would
rather be given by

. LU (96)
o 411:?.“1"24:: .
The fact that both the proper-time velocities should be present mn the
expression above, can also be seen on the basis ut_‘ symmetry. Tha_l is, if one ?f
the proper-time velocities 1s left, Newton’s action-equals-reaction principie
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would not be satisfied. The presence of the proper-time velocities might
modify Coulomb’s law. As a consequence, the subsequent dynamics might
differ from the classical one if the velocities of the charges approach the speed
of light. Unfortunately, for two-body motions it is hard to make a reliable
comparison with the relativistic electrodynamics because of the retardation
effect. The description of retardation leads to an implicit equation. As a
consequence, the Liénard-Wiechert type of potentials lead to infinite series of
corrections. The retardation corrections become significant when the
velocities approach the speed of light, and that is precisely in the region where
differences between the present theory and the relativistic electrodynamics
can be expected. In order to avoid the problem of retardation we restrict
ourselves to the case of the motion of an electron in the vicinity of a heavy
electrical source, We take a heavy source mass since we want it to be al rest.
For convenience we let the source generate a static electric field. That is, we
discard magnetic fields due to the spin of the source. For this case it is
sufficient to consider the fourth component of the potential field. Then the
Lagrangian for the motion of the electron reads

L= mu“u“ +2gAu,, (97)

where 4, = — = and g = - e . Anticipating the Bohr model for the atom,
4dne re

0
we take Q = Ze for the charge of the nucleus (the source). Furthermore, for the .
proper-time velocity of a nucleus at rest, we have U, = ¢. If we also restrict

ourselves to motion in the 6 = Oplane and change to polar coordinates, the
Lagrangian reads

2Ze’u
L=mk® +r'o’)+mu + = (98)
4ne re
For this Lagrangian the Euler-Lagrange equations of motion read
Ze'u
mFE = mro” - = . (99)
dne,rc
mrio = L (100)
and
Z |
mu, + SR (101)
4ne re



— 658 -

where L and B are constants of motion. Of course, L is the angular mqmemun}
of the electron. Equation ( 101) for the proper-time momenium will be o

special interest. By means of equation ( 86) it can also be written as
Pl A (102)
i dne re !

¢ -V
3 3 2
where v is the velocity of the electron. In general, vVi=kl+riet=k’ W
For circular motions, as in Bohr’'s model, we will use v fmt the mtlitmna!
velocity. The use of v instead of w makes the lsuhsequentl equations loo mu;e
familiar to us. For low velocities, as actually is the case 1n the Bohr atom, the
latter equation reduces, 10 first order, to

zZe' ) 103)
lmvzn =mec’ - Bc . (

2 dme,r _
Since m, ¢ and B are constants of motion, the latter equation can also be

written as

1 2 262 ( 104)

=y = e

2 4me ¥
where T is a constant of motion. The latter equatign is usually regarded as th
conservation of the sum of the kinetic and pou:nt_mi energy. Now we know it
is just a consequence of the Euler-Lagrange equation -:_Jf motion for the pl:n]_:u_:l'-l
time momentum. In general, B and thus also I will depend on the imtia
position and the initial velocity of the electron. As can be inferred from

equation ( 99), for a slow circular motion the value for T is - Ze’ [ Bnegr .
For nmore general motions of the electron we should set

u = —k* -r'v’ in equation ( 99). With the notation w for the
r(:tational velocity, the complete set of equations becomes
w=r¢
w=—wk
k=71 (105)
Ze’ m

4ne,r’me

w’
;A
r

This autonompus system completely detennines_ the exlraluliun gf the polar
coordinates r and @ of the electron. For pure radial motions, for instance, we

have w=0, w =0 and

— 659 -

- Ze'

dne,r’ '

b= (106)
precisely as in relativistic electrodynamics. Remember, the mass m in the

AEST theory is the same as what is regarded as the rest mass in the TR. For
pure circular motions, we have

v 707
nty — = = - ( 107)
r  4ne.r
and
mvr=L (108)

Equation ( 107) is mathematically identical to the one used in Sommerfeld’s
model for the atom. The factor v , responsible for the fine-structure splitting,
is not due to an increase of mass. Instead it is due to a decrease of sensitivity
of the electron. Equation ( 108) slightly differs from the relativistic
expression:

my =L (109)
Remember the m stands for what is regarded to be the rest mass in the TR. As

we will see in the discussion of the Bohr atom, the difference turms out to be
in favor of the AEST theory.

6.1 The Bohr atom reconsidered

Equations { 99), ( 100) and ( 104) are similar to the classical equations. We
could therefore proceed in the same manner. As can easily be checked by the
reader, it leads to the same prediction for the frequency of the absorbed or
emitted photon. Yet, there is a substantial conceptual difference. In Bohr's
model the electron absorbs the ‘energy’ of the photon in order to make a
transition to a state of higher ‘energy’. In the AEST theory, however, an
energy difference between states can only be accomplished if the mass of the
electron is different for each state. Also, the conservation of mass is only
satisfied if the electron ahsorbs or emits the mass of the photon. Remember, in
the AEST theory photons have mass. Because of the conceptual differences,
an explanation for the Bohr atom will be-offered on the basis of the present
theory. To this end, the AEST conservation laws will be applied to the process
of absorption or emission of a massive photon. The initial state of the electron
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will be given an index n, the final state an index N. The conservation of mass
for the emission of a photon reads

My B0 (110)

A plus sign would correspond to the absorption of a photon. ‘In case the ini}ial
state and final state consists of free particles, the conservation of proper-time
momentum would read

m et —vi =mgJet =y, . (111)

As we saw, this conservation law leads to an entirely new description of
Compton scattering and pair annihilation. However, for the transition between
bound states it will be too naive. Consider, for instance, a particle captured in
2 bound state which becomes free after a collision. When leaving the potential
well, its spatial velocity as well as its proper-time velocity .will qhange. The
change of the potential should therefore be taken into consideration as well,
Since the constant B is the sum of the proper-time velocity and the proper-
time potential Zah/r, it is reasonable to assume that it is the gquantity B in
the equation ( 101) which has to be conserved:

B,=By . (112)
By means of this conservation law 1 will offer an altemnative description of the

Bohr atom. For circular orbits equation ( 99) can be written as
mvir = Zohu,. With o the fine-structure constant, the squarc reads

piviet = 220 ki (c* —v’). Taking the square of equation ( 100) and

applying the quantisation condition, we obtain m’v'r’ =n'h’. From the
latter two equations we can either eliminate mr:

o Late (113)
S
or eliminate 1.
3 ”Ihz{"l‘_'_zlul} {114}
e 3 T
Zoe
Similar expressions hold for the state NV. Equation ( 101) can be elaborated to
2%’ VA
R s (115)
¥ Za

From the latter two equations , in tumn, one finds

B_=mc-d'|+21u:f'n? : (116)
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Substitution of this expression in the conservation law ( 113) then gives
1
m;‘:. 1+Z%* /In’
value is the same as what is called the rest mass of the electron in the TR.
With m_=m_ 1t follows that the mass of the electron in the n state is given

m 1+Z%a’ N
For a free electron, n = oo, the mass of the electron will be denoted as m, . Its
by

P Ry (118)

2l
A similar expression holds for the electron in the N state. It follows that
my, <m, if N < n, in correspondence with the classical picture of the emission

of a photon when the electron makes a transition to a lower state. Substituting
the expressions for the electron masses in the different states into equation
( 110) and using the frequency-momentum relation, m c=hf /c, for the

photon, we obtain for the frequency of the emitted photon
b m,c? [ 1 | ] (119)
h \f1+Z%lin® 1+Z%INY)
With good approximation, that is, for small Z, it can be written as
mZiwe (1 1
f=—[—1——3]- K24
2h N° n
This is precisely Bohr's classical result [30].

From equations ( 114) and ( 118) we obtain for the radius of the circular orbit
of the electron in the » state:

T (r* + 2%k
MU Zociom;
For small Z it reduces to the classical value r, = n’h/ Zo.em_. Similarly, for

small Z expression ( 113) reduces to
v, =Zocln.

(121) -

(122)

The latter is equal to the classical result. As can be inferred from equations

( 107) and ( 109), the latter also holds in the TR. That is, it also holds for large
velocities. The implication of the TR relation ( 122) is that an ionized atom
with Z > 137 cannot have an electron in the n = 1 state since the velocity of
the electron would exceed the speed of light. The AEST expression ( 113)
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does not bear this shortcoming. For every 7 the velocity of the electron is
smaller than the speed of light. The classical equation ( 104) is only
approximately valid for low velocities of the electron. At this point the present
theory is in favor. The important thing is that a consistent model for the Bohr
atom can be given which is entirely based on the concepls of an AEST and of
an invariant mass. As we saw, it leads to order Z'a” to the correct prediction
for the separation of the spectral lines of hydrogenic atoms. The next step, of
course, is to analyze the situation for elliptical orbits to order Z ‘a* to see if
the present model also leads to Sommerfeld’s prediction for the fine structure
separation. Although highly interesting, it is beyond the scope of this paper.

6.2 About the Maxwell equations

As might be obvious from the similarity with relativistic electrodynamics, the
Maxwell equations can also be derived in an AEST [19]. With respect to an
observer at rest in the absolute rest frame, the Maxwell equations are identical
to the ones in the TR. Also, for moving frames of reference the proper-time.
approach can be applied. The proper-time of an object moving with respect to
the new, moving frame still has to be taken as the fourth coordinate. Actually,
everybody will agree about its value since proper-time is invariant with
respect to the observer. The difference is laid in the parametrisation. In the
same way as the (global) clock at rest with respect to the absolute rest frame
parametrises the events, the (local) clock at rest with respect to the moving
frame will then be used for the parametrisation. In short, a moving observer
will use his proper-time for parametrisation. On the basis of this concept, Gill
et al succeeded in generalising the proper-time electrodynamics with respect
to moving observers. The resulting Maxwell equations, for instance, contain a
damping term and explains radiation reaction as inertial reaction o
acceleration [6].

It would take too much space to discuss all the (new) kinds of
electrodynamical motions. This section will therefore be ended with the
conclusion that the present theory offers good possibilities for the construction
of a consistent and satisfying electrodynamics in an AEST. On one hand, the
new electrodynamics is close to the classical electrodynamics. On the other
hand, it deviates from classical electrodynamics in a subtle way because of the
presence of the proper-time velocity. The most important consequence, for the
moment, is that electric fields effectively are proportional to the proper-time
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of the source, in the same way as the magnetic fields are proportional to the

_spai‘lallvclgcﬂy‘ﬁrlthe source. As we will see in the next section, it can have
mtriguing implications. .

7. The sign of proper-time

In the discussion of pair annihilation we already explicitly made use of the

phenomenon of reversed proper-time. In this section we will consider some
further consequences of proper-time reversal.

7.1 Pion decay

We cansndler a pion at rest decaying into a muon and a neutrino. Without loss
of generality, the x-direction can be taken as the direction the muon moves
off. The conservation of momentum in the x-direction, proper-time
momentum and mass, are adequately described as follows [22] :

O=—Mec+ MV ,

. (123)
G, M =V, +amfc’ -vi =o, M, | s (124)
and
m=M + MM ;
(125)

The subscripts identify the particles in obvious notation. The capitals
correspond to the situation after the decay. The lefi-hand side of the equagnn

{ 124) corresponds to a model where the quarks move in rotational orbits
around a common barycenter. The mass of the pion equals the sum of the
masses of the quarks: m_ =m, +m,. The o 's are the signs of the proper-time

vc!cr_cmes of the particles under concemn. It either 15 +1 or -1. Since explicit
use 1s made of the mass of the neutrino, the present theory is supported bl; the
recent observations with the SuperKamiokande neutﬁno—detﬂclur [31]. From
equations ( 123) and ( 125) it follows that ;
Vole=(m -M )M,
(126)
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Putting in the actual masses, we get ¥, = 032¢. This result differs somewhat

from the value 0.27¢ as predicted by the TR [32]. Substitution of the latter
into equation ( 124) leads to

o, m,Jc —v] +o,m, ‘)Cz —v; =0uf1)3m, M, —m . ; (127)

The right-hand side makes sense if the mass of the muon is larger than half the
mass of the pion. So, the conservation of proper-time momentum leads to the
following limits for the muon mass: Yam, < M, =m,_ . For a pion at rest the
velocities of the quarks will be given by myv, =-m,v,, because of
conservation of momentum. If we also put in the actual value of the muon
mass, M = Yam_, equation ( 127) becomes

o m, et —vi +0, 4 mic’ —mv, =6 cm, 12 . (128)
Taking the square, we obtain

26,0,4C —V; chzcz —vi=2vl - (1-x)' 12, (129)

where the ratio of the quark masses is defined as x =m, /m, . Taking the
square once more, wWe arrive at
I'E.I“C:E—‘(Kz—fﬂ'lfl}.lrg. {13‘]}

For the other quark we find
‘r’j-‘IC:E—'[iC'l—ﬁ(_l'}‘l:lfS. {131}

These expressions only make sense if the right-hand sides are nonnegative.
So. the conservation of proper-time momentum leads to the following limits
for the ratio of the quark masses:

3-2J2 <x <3+2J2. The proper-time velocities of the quarks read
1, =0,(3-x)/ 2+/2 and T, 20,03-X "}FE\E.II follows that the velocity
for the up quark would be equal to the speed of light if x = 3. Larger values
for x correspond to the situation with reversed proper-time for the up quark.
Similarly, the velocity of the down quark would be equal to the speed of light
if x =1/3. Smaller values for x correspond to the situation with reversed
proper-time for the down quark. For illustrative purposes the spatial velocities
and the proper-time velocities of the quarks are plotted in Figure 6.

Now, let us take a positive proper-time for the electron. We could take a
negative proper-time for the electron as well, it is just a matter of convention.
With this convention negative charges correspond to positive proper-times
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and po'.sitiv_c charges to negative proper-times. The advantage of this
convention is that the positron will have a negative proper-time velocity and is
therefore the antiparticle of the electron (remember, in the present model it is
the reversal of proper-time which changes a particle into its antiparticle)
Clearly, it would have been more convenient if the charge of the electron wa&:p
defined as positive. Since history cannot be changed, it has to be done this
way. With this convention, the sign of the proper-time of the quarks have to
be equal to each other as well as to the sign of the proper-time of the muon. .

The situation 6, =, =g, =+] comresponds to the decay of the negative
pion: n° =di —u +v . Similarly, the situation o, =0, =0, =-1
corresponds to the decay of the positive pion: ©° =du — p* +v . In either

cafe we arrive at the following limits for the ratio of the quark masses:
3" <k <3 . This, in tumn, leads to the following range for the mass of the up
quark: Yem, <m, <%¥m_ . A similar range holds for the down quark.

1.2
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0.8
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Figure 6. The rotational velocities and proper-time velocities of the

quarks inside the pion plotted against the ratio of their masses.
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Also, the decay of the neutral pion can be given a comprc_hcnsiblc
explanation, Consider a quark-antiquark pair, ull fur‘ instat]ce. Since lh_e:
quark and the antiquark will have equal mass, they will orbit amurlsd their
common barycenter with equal velocity. As a consequence, the n_mgm.tude of
their proper-times will also be equal. However, being an antiparticle ti.w
antiquark will have reversed proper-time. The two proper-time momenta will
therefore cancel each other. Similarly, the total proper-time momentum of the
dd pair will aslo be zero. Since n° = (uit —dd) /42, the total proper-time
momentum of the neutral pion will be zero. Such particles will be referred to
as zero proper-ime particles. The photon and thq neutrino also are zero
- proper-time particles. The conservation of proper-time momentum requires
the total proper-time of the decay products also to be zero. This can be
satisfied in two ways. Either the decay product is a zero proper-time particle,
like the n and © meson, or the decay is a 1y pair. Since there are no zero
proper-time mesons with a mass smaller than the qeutral pion, the nculr_al pion
can only decay in a pair of photons. The conservation of momenta requires the
photons to move off in opposite directions. The conservation of mass leads to
the expression A

f =m_c? [ 2h for the frequency of the photons. Again, the AEST prediction

is identical to the TR prediction. Of course, particle physics offers a more
detailed understanding for particle decay. However, the possibility should not
be excluded that the conservation of proper-time momentum will lead to
additional restrictions for decay processes. It should also be noted that the
present analysis of pion decay is not complete. When the pions decay, a
transition is made from a bound state (two bound quarks) to a free state (a free
muon and a free neutrino). So, the lefti-hand side of equation ( 124) should
also contain the proper-time potentials of the quarks. For this reason I_ha
present analysis is of limited value. It should rather be seen as a qua]ztz!twe
analysis in order to show some of the consequences of the sign of proper-time.
Further research clearly is desired.

7.2 CPT and the arrow of time

As we saw in the previous section, the intensity of the electric ﬁ;id genera}ed
by a charged elementary particle is proportional to its proper-time veIchty,
while the generated magnetical field is proportional to its spatial velocity. It
therefore makes sense to distinguish the electric charge from the magnetic
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charge. The effective electnc and magnetic charges can be written as QU,
and OV, respectively. So, for each velocity of the source the ‘state’ of its
effective charges can be written as follows: Q[U . ,V]. For our purposes it is
convenient to separate the sign of the proper-time velocity from its magnitude.
Thus Q[GF_ |U4 ,V]_ As mentioned before, an antiparticle is regarded as a

particle with reversed proper-time. Since both the electric and magnetic fields
can change sign, a sign should also be present in the effective magnetic

charge. Thus Q{U LR S V], For the electric field it is clear that it is related

to the sign of proper-time. For the magnetic field it is not. In fact, the sign of
the magnetic field can be related to the helicity of an internal kind of motion
(not to be confused with spin). This idea originates from the following
considerations. Firstly, the sign of spin magnetism is determined by the sign
of the spin. It can therefore be imagined that the sign of the classical (spinless)
magnetism is related to some other kind of internal rotation. Secondly, for an
electron in a bound orbit, the quantisation of the angular momentum,
mvr = nh, and the concept of the de Broglie wavelength, 2 r = sk |, lead to

the relation mv = hf /c. That is, the frequency is proportional to velocity.
Something which has also been advocated by Smit on the basis of the
triangular relationship between the spatial, proper-time and total velocity [33].
As follows from the Biot-Savart law for point particles, the magnetic field
generated by the (spinless) electron also is proportional to its velocity. For a
charged particle moving at the speed of light (taking the possibility for
granted), the generated magnetic field is proportional to the speed of light.
Also, now the frequency is proportional to the speed of light, as can be seen
from the relation mc = hf / ¢. The notation is chosen on purpose in order to
show that frequency is related to momentum, and not to energy as the usual
notation, me’ = hf , suggests. In case the velocity is equal to the speed of
light, there is no mathematical difference. If in both examples the magnetic
field as well as the frequency are proportional to the velocity of the charge,
then it is reasonable to assume a connection between the magnetic field and
the frequency of the internal oscillation. Since this part of the paper contains
an element of speculation, it is worthwhile to mention that also soliton-like
models for the photon suggest a relationship between the electromagnetic
amplitude and frequency [34]. If the idea is correct, then the ‘state’ of a

moving charge can be written as Q{-:rl |Lr"|,U, V], where the first sign is the




T

sign of proper-time and the second sign is the helicity of the rotation in an
internal dimension. The helicity is +1 for a ﬁghlhanded rotation and -1 fur a
lefthanded rotation. Now we can define the following operators for changing a
state.

c:  clzulo]=[Flu.).our]. : (132)
It reverses proper-time and therefore the sign of electric field.
p. Plodul tv]=[oclull, 7). (133)
It reverses the helicity and therefore the sign of the magnetic field.
. rltu) ev]=[Flul 7 v (134)

It reverses both the proper-time and the helicity and therefore both the electric
and magnetic field. It is the latter operation which changes a particie into its
antiparticle and vice versa.

These operators have the following properties: C* =1, P'=1, T’ =1

and CP=T=-1.

In electromagnetism there exists no particle which respond to an electric field
as an electron and to a magnetic field as a positron. So, in electromagnetic
interactions € and P cannot occur on itself. Alternatively, the reversal of
proper-time is always accompagnied by the reversal of helicity, CP (or T)
cannot be violated. For instance, in most decay processes, such as the decay of
the negative pion in a negative muon and a neutrino, also the conjugated
decay takes place (the decay of the positive pion info a positive muon and an
antineutrino). Since C must be accompanied by P ., the handedness of the
neutrino will also be reversed. As known, it explains why it takes CP to
conjugate the decay and why the handedness of the antineutrino is opposite to
the handedness of the neutrino. It should be noted, however, that our
definitions for the operators differ from the usual ones. Usually C stands for
the conjugation of total charge (both electric and magnetic), thus similar to
our T. Usually P stands for the parity of spin, while our P has nothing to do
with spin. On the contrary, it is related to some other kind of internal rotation.
To be specific, it is related to the phase factor (governed by the U(1) group) of
the quantum mechanical wavefunction for electromagnetism. A concaptf;:al
difference also occurs for the operator T. If we run the movie of a moving
electron backwards, the helicity of the internal rotation will be reversed. Also,
the hands of a comoving clock will run counterclockwize: proper-time
reversal. The operator T usually is regarded as the reversal of universal time
(the evolution parameter). Our T changes a particle into its antiparticle. That
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is, 1t reverses proper-time and not the evolution parameter. As can be seen in
Figures 1 and 2, an antiparticle runs backwards in proper-time, while -
parameter time still is running forward. That is, in the AEST the motion of an
antiparticle is preciseley as causal as the motion of a particle. QOur T does not
reverse the time-ordering of events. Clearly, the present theory will have
consequences for the discussion of the arrow of time.

Obviously, the present theory does not solve matters as the parity violation in
weak interactions. However, a generalisation of the present theory to the
situation for the weak interaction might do. It cannot hurt to look at things
from a different angle. | therefore considered it worthwhile to be mentioned.

7.3 Zero proper-time electrons

When an electron 15 subject to a linear acceleration its sensitivity to the
electric field will decrease at the same rate its proper-time velocity decreases
(giving rise to the misconception of increasing mass). Approaching the speed
of light the sensitivity becomes extremely low. It therefore never can reach the
speed of light. However, once it moves with the speed of light a very
interesting phenomenon occurs. Next to being insensitive for electric fields, it
also does not generate an electric field. What remains is a sort of magnetic

monopole. Not in the sense that & B’ # 0 as for the conventional monopole.

This ‘monopole’ generates a rotational magnetic field. Still it is a sort of
monopole since it generates solely a magnetic field and no electric field. In
analogy with the word electron it could be called a magnetron, but that word
already is used for the cooking device. The ‘state’ of this monopole can be

written as -—E[D.G ,,c]. That is, it is electrically neutral. The state of this

monopole is stable. Its path may be deviated by a magnetic field, but its
velocity cannot be decelerated by an electric field. Let us also consider a
positron moving at the speed of light. What we then have is an ‘anti-
monopole’. As we saw, changing from the electron to the positron goes with
the CP operation. As a consequence, the handedness of the antimonopole will
be opposite to the handedness of the monopole. The accompamied conjugation
of electric charge is, although present, invisible since it is effectively zero.
Because of this there cannot be two kinds of monopoles with opposite
handedness. If the monopole is righthanded, the antimonopole is lefthanded.
This reminds us to the parity rule for neutrinos. Since neutrinos also move at
the speed of light, I suggest to denote the new monopole as a *magnetrino’. |
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neither know if the magnetrino will ever be found, nor if it even exists. Yet, it
seemed worthwhile to be mentioned.

8. Scope for the future

At the end of a paper one usually summarizes the results an!d discusses the
consequences. As an example, a consequence of Ehe present sxqgle parameter
model is that it solves the simultaneity problem in the ‘equal-time canur!mal
" commutation rules’ for quantum operators. Also, ﬁ'.:il' mult:bnd;rr interactions
and the evolution of the quantum wave function, a single evolution parameter
is required or at least highly desired. The present theory meets this
requirement. As another example, the praser?t thmgr solves t.he problem of the
missing equation. Drawing the analogy with fluid dynamics, as argued by
Jeffries, one expects five equations in the TR [26]. The latter clearly 1s
governed by four equations: three for the momenta and one for the energy.

Fluid dynamics is governed by five equations: three for the momenta, one for -

density and one for pressure. The present model also is govemed 'qy five
equations: three for the momenta, one for mass (cunespun{?mg with the
density equation in fluid dynamics) and one for thcrpmper-tlmc m?m':n_l:
{corresponding with classical energy or pressure in the case of flui
?ignmtl:;;y fill pages with advantages of the new model, but l_wil'l not. This
time it might be better to let the readers draw their own cnnleus_lons. Instead, |
want to spend some words on the direction of further investigations. ;
So far, the reformulation of mechanics, gravitational d}r_n_amlcs, and clals.s_lcal
electrodynamics was quite successful, or at least promising. In my opinion,
the incorporation of spin magnetism will not meet serious problems. In fact, a
proper-time formulation of the Dirac theory recently appeared [35]. The next
step would be to see whether flavor and chromodynamics can be reformulated
within the concepts of the AEST theory. On one rhand one can expect the
underlving group structure for the internal symmetries not to be different. On
the other hand, substantial differences can be expected for quantum 'ﬁled
theory since the Feynman calculus is highly based on the thgory of relativity.
Inevitably it will also have implications for the foundations of quantum
mechanics, probably even on a conceptual level. Once the mfanu]atmn has
been successful a new description of physics will emerge. The sign, velocity,
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and momentum of proper-time will be emphatically present in the new
physics. The latter can therefore be appropriately denoted as proper-time

physics.
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